
INTRODUCTION

The mathematical formulation of rheology, the sci-
ence of fluid flow in general, is essentially an achieve-
ment of the 18th century, related to the names of Daniel
Bernoulli, Euler and Lagrange. During the second half
of the 20th century, the Truesdell-Noll school of ration-
al mechanics performed a critical revision of the non-
linear theories of mechanics [1] and summarized virtu-
ally all that was known and correct about the non-linear
theory of rheology and the corresponding experimental
issues [1-8]. From the viewpoint of rational theory,
Newtonian fluids (Navier-Stokes-Poisson fluids) appear
as a very special case of far more general materials
models (non-Newtonian fluids). The possibilities and
the outcome of experimental work, however, depend
widely on the equipment available. E.g. when a capil-
lary or rotational viscometer is the only equipment
available the shear stress at a certain shear rate, in other
words the apparent viscosity, is usually the only quanti-
ty directly accessible to measurement. In this case it is
necessary, for pragmatic reasons, to introduce the con-
cept of generalized Newtonian fluids to interprete the
measured data. In this paper, this concept is recalled and
it is emphasized that, inspite of this, suspension rheolo-
gy is based on the assumption of the existence of a
(unique) Newtonian viscosity.

Suspension rheology as a special subject in its own
right, is about 100 years old. Except for Arrhenius'
empirical exponential relation dating back to 1887
[9,10], Einstein's inaugural dissertation of 1906 [11] can
be considered as the starting point of suspension rheo-

logy (and of micromechanics in general). Einstein's
work has launched an immense amount of theoretical
and experimental work on suspension rheology during
the 20th century. In particular, there have been many
efforts to extend the Einstein relation, which can be
valid only for dilute suspensions, to non-dilute systems.
Apart from the theoretical interest, there is a strong
practical aim behind this line of research: suspensions
are important in materials processing technology. E.g.
ceramic technology relies widely on the shaping of slur-
ries and pastes. In this case a prediction of the effective
viscosity for a certain solids volume fraction can be very
useful for process control. Nevertheless, it seems that in
the literature there exists some confusion about the sta-
tus and applicability of effective viscosity formulae.
This paper should clarify some of these points. The most
important effective viscosity formulae are presented in a
new way which clarifies the status of these formulae and
makes a clear distinction between exponential
(Mooney-type) relations and power-law (Krieger-type)
relations. Based on a functional equation approach, a
tentative explanation is given why power-law relations
are usually more successful than exponential relations.
The so-called Robinson relation is rediscovered from
oblivion and the reader is reminded of the fact that the
Eilers relation is identical with the Maron-Pierce rela-
tion. The latter can be recommended for rough predic-
tion purposes in cases where measured data are scarce
and microstructural input information is lacking. Final-
ly, a modified version of the so-called Frankel-Acrivos
relation is proposed which, in contrast to the original
formula, exhibits correct behavior in the dilute limit.
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VISCOSITY FROM THE VIEWPOINT OF
RATIONAL MECHANICS

From the macroscopic point of view suspensions
can be considered as continuous media. Within the
framework of rational thermomechanics (continuum
mechanics and thermodynamics) [1-8] viscous fluids
are characterized by a constitutive equation of the form

(1)

where T is the Cauchy stress tensor (in the case of sus-
pensions the effective Cauchy stress tensor), ρ the den-
sity (in the case of suspensions the effective density), T
the absolute temperature (assumed to be the same for all
constituents or phases) and D the (effective) deforma-
tion rate tensor defined as the symmetric part of the
velocity gradient v,

(2)

Note that internal friction (viscosity) can only be
modeled when the deformation rate tensor D is includ-
ed in the set of independent variables. Otherwise only
inviscid fluids, i.e. ideal gases, are included in equation
(1). On the other hand, viscoelastic behavior is not
included in the material model described by equation
(1). It is usual to decompose the stress tensor T into a
so-called spherical part - p1, containing the pressure p,
and a deviatoric part ττ (shear stress tensor), responsible
for dissipation due to internal friction. While for com-
pressible fluids (gases) the spherical part corresponds to
the thermodynamic pressure p (ρ, T) (determined by an
equation of state, e.g. the ideal gas equation pρ-1 = RT),
for incompressible fluids (liquids) the spherical part
corresponds to an indeterminate hydrostatic pressure
p(= constant), which can be arbitrarily assigned from
the exterior. 

Due to the so-called Cayley-Hamilton theorem and
the representation theorem for (symmetric) isotropic
tensor functions with (symmetric) second-order tensor
arguments [1-8], the constitutive equation for isotropic
viscous liquids can be written as

(3)

In this equation, the scalar coefficients ψ1 (i = 0, 1,
2) are functions of ρ, T and three scalar invariants of the
deformation-rate tensor D, e.g. the invariants tr D, tr
(D2) and tr (D3) or the so-called principal invariants

(4)

Note that the nonlinear constitutive equation (3)
follows directly from equation (1) for the special case of

isotropic symmetry, without further assumptions. The
class of non-Newtonian fluids described by equation (3)
is called Reiner-Rivlin fluids. 

For reasons of convenience let us ignore the tem-
perature dependence in the following, i.e. although not
explicitly written, the temperature dependence is under-
stood automatically. 

For incompressible fluids ρ is constant and can
therefore be omitted from the set of independent vari-
ables (i.e. as arguments in the coefficients ψi). Further,
the first invariant reduces to zero because of mass con-
servation (ID = tr D = 0) and the first r.h.s. term of equa-
tion (3) can be included into the indeterminate hydro-
static pressure term on the l.h.s. When, additionally,
normal stress effects are neglected (i.e. geometrical sin-
gularities are avoided during flow) and only viscomet-
ric flow is considered (i.e. flow types equivalent to sim-
ple shear flow), the third r.h.s. term of equation (3) can
be ignored and the third invariant reduces to zero
(IIID = det D = 0). Taking into account the fact that the
second invariant is also simplified due to incompressi-
bility, the resulting constitutive equation for the shear
stress tensor ττ is

(5)

where η is the shear viscosity. This is the constitutive
equation of so-called generalized Newtonian fluids (liq-
uids), which is the basic constitutive equation assumed
for viscometric measurements. For one-dimensional
flow geometry, the constitutive equation of generalized
Newtonian liquids can be written as

(6)

where τ is the shear stress and γ the shear rate. For
Newtonian liquids the shear viscosity η is a constant,
while for non-Newtonian liquids the shear viscosity is a
(even) function of the shear rate, cf. equation (6). In
other words, the flow curve of Newtonian liquids is lin-
ear, while for non-Newtonian liquids it is nonlinear. In
the case of a nonlinear flow curve, equation (6) defines
the so-called apparent (shear) viscosity as the ratio of
shear stress and shear rate at a certain shear rate, i.e.

(7)

Of course, the constitutive equation of Newtonian
fluids can also be obtained directly by linearizing equa-
tion (3), i.e.

(8)

where the viscosities γ and η are constants. In the case
of incompressible fluids (liquids) this equation reduces
to

(9)

in 3D geometry and to
(10)

in 1D geometry. We remind the reader that it is under-
stood, although not explicitly written in equations (5)
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through (10), that the shear viscosity η is also a function
of temperature. Note that only for Newtonian liquids
there is a uniquely defined shear viscosity. Most real
suspensions, however, exhibit non-Newtonian behavior,
i.e. usually nonlinear flow curves are measured in vis-
cometric flow experiments. Some suspensions, howev-
er, exhibit approximately Newtonian behavior (i.e. lin-
ear parts of flow curves) at very low or very high shear
rates. Sometimes it is recommended to consider these
regions to compare the effective viscosities for different
solids volume fractions. But it should be kept in mind
that this approach suffers from a fundamental disadvan-
tage: the quasi-Newtonian (i.e. linear) regions of the
flow curves are usually attained at different shear rates
for different concentrations. This indicates a fundamen-
tal problem of suspension rheology in general, which
has not been paid due attention to in the literature so far.

CONCENTRATION DEPENDENCE OF VISCOSITY
FROM THE VIEWPOINT OF MICROMECHANICS

In the preceding section, the existence of the shear
viscosity was discussed within the framework of ration-
al mechanics, i.e. from the viewpoint of classical con-
tinuum mechanics. This is a valid approach for suspen-
sions. As long as the suspensions are considered from a
macroscopic length scale, i.e. in processes (e.g. visco-
metric flow experiments) in which the external charac-
teristic length (e.g. the viscometer gap or capillary
diameter) is much larger than the intrinsic characteristic
length of the microscopic heterogeneities (e.g. the size
of the suspended particles), suspensions can be treated
in complete analogy to one-phase continua. This is
important to know, in particular because a rigorous
treatment of suspensions by rational mixture theory is
still a non-trivial and highly disputable subject of
research, cf. e.g. [12-15]. 

Nevertheless, it is possible to include a certain
degree of microstructural information by adopting a
micromechanical viewpoint [16,17]. In micromechan-
ics, suspensions are considered as multiphase (usually
two-phase) mixtures or, equivalently, as fluids (liquids)
with microstructure. Micromechanics defines so-called
effective material properties for the mixture (e.g. effec-
tive suspension viscosity) as a whole, which depend in
principle on all details of the microstructure. Complete
microstructural characterization is of course impossible.
It would require e.g. an infinite set of so-called correla-
tion functions [16-19]. Therefore one attempts to use
the minimum of microstructural information necessary,
i.e. the lowest-order correlation functions. These are the
volume fractions. For a two-phase system (e.g. a sus-
pension, which can be considered as a solid-liquid mix-
ture) one of the volume fractions is sufficient, usually

the volume fraction φ of the solid phase. Thus, from the
viewpoint of micromechanics, the effective viscosity of
a suspension is assumed to be a function of the solids
volume fraction,

(11)

This is the basic equation of suspension rheology.
As before, it is understood, although not explicitly writ-
ten in equation (11), that the effective viscosity is also a
function of temperature. The principal problem with
this assumption, i.e. with the fundament of suspension
rheology itself, is that it cannot be valid in general. The
effective viscosity of a solid-liquid mixture cannot be a
unique function of volume fraction alone. E.g. a sus-
pension with 50 vol.% of alumina powder and 50 vol.%
water is easy to prepare and has a certain (finite) effec-
tive viscosity. It is also thinkable, however, to prepare a
solid skeleton of alumina ceramic material with 50
vol.% open porosity and to infiltrate the pore space with
50 vol.% water. In both cases the solids volume fraction
is φ = 0.5, but in the latter the viscosity would be infi-
nitely high or is simply not defined. Therefore, in
abstract terms, equation (11) should be formulated as

(12)

Since, however, the second argument is hard to
quantify by appropriate measures and even harder to
determine experimentally (in porous solids e.g. second-
order and third-order correlation functions can only be
determined by intricate microscopic image analysis,
tomography, NMR, diffraction techniques or, for model
microstructures, by simulation methods [16,17,20]),
one usually adopts the oversimplified version (11), as
the fundamental assumption of suspension rheology.
Often the only specification of the type of microstruc-
ture is a qualitative one: a suspension is considered as a
solid-liquid mixture of matrix-inclusion type, i.e. with
isolated solid particles in a liquid matrix. One has to
keep in mind, however, that in doing so, other
microstructural information, which would be included
in a correlation-function approach, is a priori ignored
(e.g. particle size distribution, particle shape, degree of
particle orientation, structural type of particle arrange-
ment).

EFFECTIVE VISCOSITY FORMULAE

Dilute approximation, second-order expressions
and differential scheme approach

The dilute (i.e. non-interaction) approximation for
the dependence of the effective suspension viscosity on
the solids volume fraction is given by the Einstein rela-
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tion [11]. According to Einstein, the effective viscosity
of a dilute suspension of rigid, non-interacting spherical
particles is

(13)

irrespective of (absolute) size and (relative) size distri-
bution. In this equation, η denotes the effective (i.e.
macroscopic) suspension viscosity and η0 the viscosity
of the suspending medium (pure liquid). In order to sim-
plify notation in the following text, we introduce the rel-
ative viscosity ηr, i.e. ratio of the effective viscosity η
and the viscosity of the suspending medium η0. The
Einstein relation, equation (13), is the cornerstone of
suspension rheology. Note that in the limit φ → 0 it is an
exact result for suspensions of spherical particles.
Therefore all extensions to non-dilute rigid-sphere sus-
pensions should reduce to the Einstein relation in the
dilute limit. The Einstein relation has been extended to
non-rigid (deformable) particles by Taylor [21] and to
non-spherical (spheroidal) particles by Jeffery [22]. In
this paper we confine ourselves to the discussion of
rigid-sphere suspensions.

Early efforts to extend the validity of effective vis-
cosity formulae to non-dilute systems resulted in sec-
ond-order expressions of the type

(14)

Interactions have to be taken into account in order
to calculate the second-order coefficient A. Values that
can be found in the literature range from 4.375 [23, 24]
to 14.1 [25], but Batchelor's value of 6.2, based on a rig-
orous calculations of pair interactions for the case of
strong Brownian motion [26], seems to be the most reli-
able. Note, however, that all second-order polynomial
expressions of this type suffer from the serious draw-
back that the relative viscosity does not go to infinity
(η → 0) as the volume fraction approaches unity
(φ → 1). Therefore second-order expressions are almost
useless from a practical point of view, both for predic-
tion and for fitting purposes. Note also that second-
order expressions of the elastic constants (Coble-
Kingery formulae) do not exhibit this principal disad-
vantage [27-31].

The first application of the so-called differential
scheme approach to effective suspension viscosity is
due to Roscoe [23] and Brinkman [24]. The basic idea
is as follows [23, 24, 32, 33]: When an infinitesimally
small volume fraction φ * of (large) spheres is added to
a suspension with original volume fraction φ, corre-
sponding to a differential increase in concentration of 

(15)

then the corresponding differential increase in effective
viscosity is

(16)

This leads to the differential equation

(17)

which has the solution (Roscoe-Brinkman relation)

(18)

For moderately small volume fractions this relation
can be approximated by

(19)

which has a series expansion of the form

(20)

Equation (19) is but an alternative representation of
Ford's [34] proposal, based on empirical findings, to
describe the fluidity (i.e. the reciprocal viscosity) by a
linear Einstein-type relation with negative coefficient,
cf. [10]. We will therefore call it Ford's relation. Inter-
estingly, the second-order coefficient in this case (6.25)
is in remarkably close agreement with Batchelor's value
mentioned above (6.2). Note in passing that the Ford
relation predicts a locking phenomenon (percolation
threshold) at a critical volume fraction of φC = 0.4, at
which ηr →    . The Roscoe-Brinkman relation is a can-
didate for a relation potentially capable of fitting effec-
tive viscosity data in the whole concentration range
from zero to unity. It exhibits the correct limit behavior,
i.e. the relative viscosity relation reduces to the Einstein
relation for φ → 0 and goes to infinity, ηr →    , as the
volume fraction approaches unity φ → 1. Another pos-
siblility to derive the Roscoe-Brinkman relation (via the
functional equation approach) will be given below.

Functional equation approach

The so-called functional equation approach con-
sists in the following: The total solids volume fraction φ
in the suspension (liquid-solid mixture) is subdivided,
in a thought experiment, into two partial volume frac-
tions, φ1 and φ2, not necessarily small, which are (one
after the other) added to the suspending medium (pure
liquid). These two virtual partial volume fractions are

(21)

and

(22)

where V0, V1 and V2 are the partial volumes of the sus-
pending medium, the first virtual partial volume of par-
ticles and the second virtual partial volume of particles,
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respectively. Thus the total volume fraction of solid par-
ticles is

(23)

as required. Since it is evident that the relative viscosi-
ty cannot be an additive function of the partial volume
fractions1,

(24)

it is reasonable to assume a multiplicative decomposi-
tion,

(25)

which tantamounts to a additive decomposition of the
logarithms, i.e.

(26)

This is the functional equation of an exponential
function [35]. Its solution is the Arrhenius relation [9]

(27)

The Arrhenius relation, although potentially capa-
ble of predicting the correct behavior in the dilute limit
(i.e. for φ → 0) by choosing e.g. B = 2.5 for spheres, has
again the serious disadvantage that in the high-concen-
tration limit  (i.e. for φ → 1) the relative viscosity does
not approach infinity (ηr →    ) as required. In the fol-
lowing we will show, how the simple exponential rela-
tion can be modified in order to exhibit correct behavior
in the high-concentration limit. For this purpose we
refine the thought experiment introduced above to allow
for the fact that, when the first virtual fraction φ1 is to be
given by equation (21) after mixing (i.e. when the sec-
ond fraction is already present), then the actual first
fraction, corresponding to the amount to be added, is 

(28)

i.e. more than φ1. Similarly, if the second virtual fraction
φ2 is to be given by equation (22) after mixing, then the
actual second fraction, corresponding to the amount to
be added, is 

(29)

i.e. more than φ2. The reason is simply that the presence
of the one fraction already present reduces the relative
content of the fraction added in the mixture as a whole.
From this point onwards, however, two lines of argu-
mentation are thinkable. Both occur in the literature.

1.It may be argued that, what holds true for the first
fraction, must be valid simultaneously for the second

fraction. This line of argumentation leads to Mooney-
type exponential relations [36]. The corresponding
functional equation is

(30)

and it can easily be verified that the exponential
expression

(31)

is a solution of this functional equation.

2.Alternatively, it may be argued that the modification
holds only for one of the volume fractions at one time.
This line of argumentation leads to Krieger-type
power law relations [37]. The corresponding func-
tional equation is

(32)

and it can easily be verified that the power-law
expression

(33)

is a solution of this functional equation. 

For both types of relation agreement with the Ein-
stein relation in the dilute limit can be achieved by
choosing B = 2.5 for spheres. Both types of relation
avoid the serious drawback of the Arrhenius relation,
i.e. they make sure that ηr →    for φ → 1. Both types
of relations are frequently used. Nevertheless, we think
there is one reason to prefer (Krieger-type) power law
relations to (Mooney-type) exponential relations. This
reason is as follows: It is evident that in the derivation
of the Arrhenius relation above the sum of the virtual
partial volume fractions used is

(34)

i.e. corresponds exactly to the actual total volume frac-
tion in the suspension. This is not the case in the deri-
vation leading to the Mooney-type relation and the
Krieger-type relation. In these cases we have 

(35)

and

(36)

for the Mooney-approach and the Krieger-approach,
respectively. In order to compare the individual sums
of volume fractions we consider the limits φ → 0 and
φ → 1 or, more precisely, the limits V1, V2 << V0 and V1,
V2 >> V0, respectively.
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We obtain 

(37)

in the limit V1, V2 << V0 and

(38)

in the limit V1, V2 >> V0 for the Arrhenius relation, the
Mooney-type relation and the Krieger-type relation,
respectively. It can be seen that the argumentation lead-
ing to the Mooney-type relation is based on a virtual
decomposition of the volume fractions which in the
high-concentration limit leads in any case to the
unphysical result that the total volume fraction φ is 2,
while the Krieger-type relation is based on a decompo-
sition, which at least allows the total volume fraction to
be approx. 1 (viz. in the case V2 >> V1). The value of
φ = 1 is of course the maximum value admissible on
physical grounds. This should be a principal reason to
prefer Krieger-type relations for prediction and fitting
purposes.

Effective viscosity relations with critical
volume fraction

Experience shows, that solid volume fractions
approaching unity (φ ≈ 1) are never attained in real sus-
pensions. The reason is that for rigid particles there
exists a critical volume fraction φC (also called maxi-
mum packing fraction or filling factor), which cannot be
exceeded. That means, when this factor is attained, a
suspension looses the capability of flow (locking phe-
nomenon). In terms of percolation theory [38] the criti-
cal volume fraction can be interpreted as a percolation
threshold. The exact value of this critical volume frac-
tion φC depends on the particle shape, the degree of
polydispersity (i.e. the width of the size distribution)
and on the structural type of particle arrangement. For
monodisperse spheres the value of φC is bounded from
below by the filling factor of simple cubic (SC) packing
(φC = 0.524) and from above by the filling factor of face
centered cubic (FCC) packing or hexagonal closest
packing (HCP), for which φC = 0.741. Traditionally, a
filling factor of φC = 0.637 has been assumed for so-
called random close packing (RCP) [39]. According to
newer research [40] this value seems to be slightly
higher, viz. φC = 0.644, but for most purposes φC = 0.64
should give a sufficiently precise estimate for the criti-
cal volume fraction of monodisperse spheres. Note that
the maximum packing fraction can be significantly
higher for anisometric particles. E.g. ordered stacks of
monodisperse penny-shaped particles (i.e. circular

discs) can attain a value as high as φC = 0.907. With
increasing polydispersity (i.e. growing width of the size
distribution) the maximum packing fraction is always
higher than for monodisperse systems. 

In order to account for the maximum packing frac-
tion it is useful to include the critical volume fraction φC

into the Mooney- and Krieger-type relations. Mooney
and Krieger did this already in their original papers
[36,37]. Using the functional equation approach
explained above with the newly defined quantities

(39)

and

(40)

one obtains the Mooney relation [36]

(41)

and the Krieger relation [37]

(42)

As the case may be, these two relations can be con-
sidered as model equations for the prediction of the
effective viscosity of suspensions with monodisperse
spheres (in this case set B = 2.5 and φC = 0.64) or as fit
equations with one (φC) or two (φC and B) fit parameters.
Both the Mooney relation and the Krieger relation
exhibit correct limit behavior, i.e. the relative viscosity
relation reduces to the Einstein relation for φ → 0 and
goes to infinity, ηr →   , as the volume fraction
approaches φ → φC, as required. 

It can now be asked what is the simplest model (or
fit equation) allowing for a critical volume fraction (or
percolation threshold) φC. It is the Robinson relation
[41]

(43)

which can be recognized as the linear (first-order)
approximation to the Mooney relation (i.e. a truncated
series expansion of the Mooney relation). In this con-
nection the well-known Eilers relation [42]

(44)

can be considered as a binomial reducing to the Robin-
son relation for moderately small φ. Note that the Eilers
relation is at the same time identical with the so-called
Maron-Pierce relation [43],

(45)

which can be considered as a special case of the Krieger
relation, when we set BφC = 2. In practice the Maron-
Pierce relation, i.e. the Eilers relation, can be used for
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fitting purposes instead of the Krieger relation when a
two-parameter fit is to be avoided and the parameter B
is not known (for non-spherical particles). Kitano et al.
[44] used the Maron-Pierce relation for data fitting.
Based on experiments concerning polymer melts filled
with fibers they found an approximately linear relation
between φC and the fiber aspect ratio R (relevant range
of  R : 6-27):

(46)

Although this is a purely empirical finding, it is
often used and seems to serve quite well for prediction
purposes, when a rough estimate of the effective viscos-
ity of fiber suspensions is required and an alternative is
not in sight. Similar to the relations of Mooney and
Krieger, also the relations due to Robinson and Eilers
(or Maron-Pierce) exhibit correct limit behavior, i.e. the
relative viscosity relation reduces to the Einstein rela-
tion for φ → 0 and goes to infinity, ηr →    , as the vol-
ume fraction approaches φ → φC. 

This is not the case for the Frankel-Acrivos relation
[45], here in the amended version proposed by van den
Brule and Jongschaap [46]:

(47)

This relation, although it has the advantage of being rig-
orously derived for the high-concentration region (close
to the critical volume fraction φC), and containing only
one adjustable parameter (φC) when used as a fit equa-
tion, has the drawback, that it does not reduce to the
Einstein equation in the dilute limit. To overcome this
drawback the Frankel-Acrivos relation for rigid-sphere
suspensions can be modified as follows:

(48)

This modified version of the Frankel-Acrivos rela-
tion does reduce to the Einstein relation in the dilute
limit and can thus potentially be used in the whole con-
centration range from φ = 0 to φ = φC.

CONCLUSIONS

The basic assumptions of suspension rheology
(existence of Newtonian viscosity, sufficience of the
volume fraction as a microstructural measure, unique-
ness of the volume fraction dependence of effective vis-
cosity) have been scrutinized and discussed from the
viewpoint of rational mechanics and micromechanics. It
must be admitted that for real suspensions these

assumptions are often not fulfilled. But in the absense of
a better alternative, these assumptions are often adopt-
ed. Naturally, the violation of these fundamental
assumptions has less severe consequences when the
relations of suspension rheology (effective viscosity
formulae) are used for fitting purposes only. Although a
certain qualitative specification of the type of
microstructure is given by the fact that suspensions are
mixtures with matrix-inclusion type microstructure
(solid particles in a liquid medium), it is clear that the
solids volume fraction alone is not a sufficient
microstructural measure. But even in cases when
microstructural features other than the volume fraction
come into play (e.g. particle size distribution, particle
shape, structural type of particle arrangement), the rela-
tions of suspension rheology can be useful. In a primi-
tive way e.g., particle shape information is contained in
the Einstein coefficient, which is 2.5 for spheres but
attains other values for anisometric particles. Similarly,
some rudimentary information on particle size distribu-
tion and / or arrangement is contained in the critical vol-
ume fraction φC.

In this paper, the most important effective viscosity
formulae for rigid-sphere suspensions (Einstein rela-
tion, second-order expressions, Roscoe-Brinkman rela-
tion, Ford relation, Arrhenius relation, Mooney relation,
Krieger relation, Robinson relation, Eilers or Maron-
Pierce relation, Frankel-Acrivos relation) are presented
in a unified way, which clarifies their mathematical sta-
tus and corrects certain misunderstandings prevailing in
the literature. It has been shown that the Einstein rela-
tion must be used as a benchmark test for the dilute limit
(i.e. all relation are required to reduce to the Einstein
relation when φ → 0) and in the high concentration limit
it must be required that ηr →    as the volume fraction
approaches unity (φ → 1) or a critical volume fraction
(percolation threshold) (φ → φC). Exponential and power
law relations have been derived by the functional equa-
tion approach. An argument has been provided why the
Krieger relation is to be preferred to the Mooney rela-
tion for principal reasons. The so-called Frankel-
Acrivos relation has been appropriately modified and
amended in order to be potentially usable in the whole
concentration range from φ = 0 to φ = φC.

Notation:
1 If this was true, the relative viscosity of a suspension
(mixture), in which only negligible amounts of  particles
have been added (i.e. φ1 ≈ 0 and φ2 ≈ 0) would be 2, which
is a contradiction in itself.
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V této práci jsou základní pøedpoklady reologie suspenzí
(existence Newtonské viskozity a závislost efektivní viskozity
na objemové frakce pevné fáze) diskutovány z hlediska
racionální mechaniky a mikromechaniky. Nejdùležitìjší vztahy
pro popis závislosti efektivní viskozity na objemové frakci
pevné fáze jsou zde prezentovány novým zpùsobem, který
objasòuje jejich matematickou podstatu a ukazuje na formální
souvislosti tìchto vztahù. Jasnì jsou rozlišeny exponenciální a
mocninové vztahy, které jsou zde odvozeny z tzv. funcionál-
ních rovnic. Práce poskytuje argument, proè by se mìly mocni-
nové vztahy preferovat z principiálního hlediska. Pro vztah
Frankela a Acrivose je navržena modifikace, která odstraòuje
nedostatek pùvodního vztahu a je aplikovatelná i v pøípadì
zøedìných suspenzí.


