
INTRODUCTION

In Parts 1 and 2 of this series of papers, the linear
theory of elasticity has been summarized for anisotrop-
ic and isotropic materials [1] and the fundamentals of
micromechanical modeling have been reviewed [2]. In
the present paper the reader is assumed to be familiar
with the contents of these preceding parts and the nota-
tion introduced there. Now we use standard microme-
chanical relations for the calculation of the effective
elastic constants of statistically isotropic polycrystalline
ceramics (alumina and zirconia) from the values meas-
ured for the components of the elasticity tensor of alu-
mina and zirconia monocrystals. For this calculation we
use the best values of the components of the stiffness
and compliance matrix, respectively, avaliable in the lit-
erature for alumina and zirconia monocrystals. In the
case of statistically isotropic ("quasi-isotropic") poly-
crystalline materials consisting of randomly oriented
monocrystals usually the Voigt and Reuss bounds are
sufficiently close, so that there is no need to apply more
complex bounds, e.g. of Hashin-Shtrikman type, in
order to achieve a realistic estimate of the effective elas-
tic properties. In this sense, we calculate the Voigt and
Reuss bounds and, following a suggestion of Hill [3],
take the arithmetic average of these bounds (the so-

called "Voigt-Reuss-Hill average") as the most reliable
estimate. The calculated values are compared with
measured values available in the literature and in elec-
tronic databases. 

THEORETICAL

Alumina and Zirconia – Monocrystals
and Polycrystalline Materials

Throughout this paper, by "alumina" we mean
monocrystals or polycrystalline aggregates of the pure
α-phase of Al2O3 (mineral name: corundum, sometimes
termed sapphire after the blue gemstone variety of
corundum), which is thermodynamically stable at room
temperature and exhibits trigonal (rhombohedric) sym-
metry (space group R3c, i.e. point group/crystal class
3m). By "zirconia" we mean the tetragonal phase of
ZrO2 (t-ZrO2) with space group P42/n mc, i.e. point
group/crystal class 4/mmm, cf. e.g. [4]. As detailed in
Part 1 of this series of papers [1], the elastic behavior of
all trigonal and tetragonal monocrystals is fully de-
scribed by 6 independent elastic constants (stiffnesses).
The measurement of monocrystal elastic constants
(stiffnesses) is usually performed by measuring X-ray
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or neutron diffraction on mechanically loaded or vibrat-
ing specimens [5-12]. Since the tetragonal phase of pure
ZrO2 is unstable at room temperature, tetragonal ZrO2

monocrystals of macroscopic size are not available and
even micron- and submicron-sized zirconia has to be
doped with additives (built into the zirconia lattice) in
order to retain the tetragonal phase at least in the bulk of
polycrystalline aggregates (e.g. sintered ceramics).
Today the most frequent compositions applied to retain
the tetragonal phase after sintering down to room tem-
perature (given a sufficiently small grain size1 depend-
ing on the grain shape and other factors [4,13,14]) are
zirconia compositions with 3 mol.% yttria (Y2O3) or
with 12 mol.% ceria (CeO2). Of course, under suitable
conditions, e.g. stresses generated at the tip of a propa-
gating crack, even these doped tetragonal grains trans-
form (via a martensitic mechanism) to the monoclinic
phase of ZrO2. When duely controlled, it is just this
effect which can be exploited to enhance the strength
and fracture toughness of zirconia and zirconia-contain-
ing composites (transformation toughening) [15]. The
non-availability of t-ZrO2 monocrystals of macroscopic
size is the reason why there are no unbiased monocrys-
tal data in the literature. Nevertheless, it is possible to
infer the elastic constants of t-ZrO2 monocrystals from
diffraction measurements on polycrystalline samples
when these measurements are supplemented (calibrat-
ed) by an independent strain gauge measurement on the
polycrystalline specimen and an ad hoc assumption con-
cerning the interpretation of the results of this inde-
pendent measurement. While Wachtman et al. [5] per-
formed classical X-ray diffraction measurements on
mechanically vibrating alumina monocrystals (dynamic
measurement), Kisi and Howard [10] used neutron dif-
fraction on a mechanically loaded specimen (static
measurement) and measured a tensile modulus of 192
GPa for a polycrystalline t-ZrO2 specimen containing
12 mol.% CeO2. Based on previous experience with
cubic zirconia in the same experimental array [11], they
considered this value as being close to the Reuss bound
[10].2 With this additional information at hand, they
succeeded in determining all 6 elasticity constants
(stiffnesses) from their neutron diffraction results. As
soon as the monocrystal data (6 stiffnesses and 6 com-
pliances) are known, it is possible to predict the 2 elas-
tic constants, necessary for a complete description of
the elastic behavior of dense (i.e. non-porous), statisti-
cally isotropic (quasi-isotropic)3 polycrystalline aggre-
gates, as the Voigt-Reuss-Hill average from these data.
The calculation of these 2 elastic constants is recalled in
this paper and its results compared to published data
measured on polycrystalline specimens. In the next sec-
tion the necessary standard formulae and theorems of
elasticity theory and micromechanics are briefly sum-
marized to the extent indispensable for the following
calculations.

Formulae and theorems of elasticity theory
and micromechanics

As detailed in Part 1 of this series, all trigonal and
tetragonal monocrystals can be described by 6 inde-
pendent elastic constants [1]. The stiffness matrix of
trigonal monocrystals is 

(1)

with the conditions Cij = Cji (diagonal symmetry),

(2)

and 

(3)

For tetragonal monocrystals the stiffness matrix is

(4)

together with conditions Cij = Cji (diagonal symmetry)
and (2). Based on the knowledge of the stiffness matrix
alone, the Voigt bound (upper bound) of the polycrys-
talline elastic properties can be calculated. In order to
calculate the Reuss bound (lower bound), the complian-
ce matrices [S], i.e. the inverses of the siffness matrices
[C] = [S]-1, must be known additionally [2,13,16-18]. 

For trigonal monocrystals the following inversion
relations hold:

(5a,b,c)

(5d,e,f)

The inversion relations for tetragonal monocrystals
are:

(6a,b,c)

(6d,e,f)
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In these relations K and K’ have the following
meaning:

(7)

(8)

Totally analogous relations are valid with the stiff-
nesses Cij interchanged by the compliances Sij, with one
exception: for trigonal crystals

(9)

cf. equation (3c). Statistically isotropic ("quasi-isotro-
pic") polycrystalline materials are (macroscopically)
fully characterized by two independent (effective) elas-
tic constants. For these materials the stiffness matrix has
the general form (4) with the conditions

(10)

i.e. the stiffness matrix can be written in terms of the
Lamé constants, or alternatively, using either of the pair
of elastic constants (moduli) E (tensile modulus), G
(shear modulus), K (bulk modulus) and ν (Poisson
ratio), cf. [1,13,18]. Since only two of these are inde-
pendent, the remaining ones can be calculated as soon
as two are known, cf. e.g. Table 1 in Part 1 of this series
of papers [1]. The most important relations can be sum-
marized as follows:

(11)

(12)

(13)

(14)

It is clear that consistent monocrystal data must
obey the inversion relations, equations (5) and (6),
exactly. Similarly, in order to provide a consistent set of
elastic constants (moduli), the effective elastic moduli
of quasi-isotropic polycrystalline materials, whether
calculated or measured, should satisfy the standard elas-
ticity relations for isotropic materials, equations (11)
through (14), at least approximately. 

According to Voigt [19,20] the effective tensile
modulus of a polycrystalline material is

(15)

the effective shear modulus

(16)

and the effective bulk modulus

(17)

In these expressions A, B, C are given by

(18)

(19)

(20)

According to Reuss [21] the effective tensile modu-
lus of a polycrystalline material is

(21)

the effective shear modulus

(22)

and the effective bulk modulus

(23)

In these expressions X, Y, Z are given by

(24)

(25)

(26)

Hill [3] has shown that the Voigt values are the
upper bound and the Reuss values the lower bound of
the effective elastic moduli of statistically isotropic
polycrystalline materials, i.e.

(27)

with M = E, G, K, respectively (Hill's theorem). Fol-
lowing Hill's suggestion, we use the arithmetic average4

of the Voigt and the Reuss value as an estimate (predic-
tion) for the respective effective elastic modulus
("Voigt-Reuss-Hill average", abbreviated "VRH-ave-
rage"), i.e.

(28)
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Estimates (predictions) of the effective Poisson
ratio of statistically isotropic polycrystalline materials
can be given using EV, GV, KV, or ER, GR, KR, or the cor-
responding VRH averages, in the standard formula (14).
It has to be noted, however, that the Poisson ratio has
several exceptional properties, which are well known in
elasticity theory. In particular, the effective Poisson
ratio cannot be expected a priori to satisfy the Voigt-
Reuss bounds, cf. [22]. Note in passing that in the case
of trigonal crystals, such as alumina, only five of the six
independent elastic constants or coefficients (i.e. stiff-
nesses or compliances) are necessary for calculating the
effective elastic properties (moduli and Poisson ratio) of
the corresponding polycrystalline materials.

CALCULATION OF EFFECTIVE ELASTIC
PROPERTIES

Tables 1 through 4 list the elastic constants (stiff-
nesses) and elastic coefficients (compliances) deter-
mined for alumina and zirconia. Note that the values for
alumina are measured on monocrystals (X-ray diffrac-
tion) [5-9], while the values for zirconia are inferred
from measurements on polycrystalline materials (neu-
tron diffraction) [10], since t-ZrO2 monocrystals are not
available (see the discussion above).

A more detailed inspection of tables 1 and 2 reveals
that Bhimasenachar's values [7] for alumina do not sat-
isfy the inversion relations (5), i.e. either (some of) the
stiffnesses or (some of) the compliances are in error.
Similarly, Sundara-Rao's original values [6] are not
fully consistent, probably due to a misprint. These
values can be made consistent, however, by replacing
the value -0.00047 of the compliance S13 by the value
-0.00043, calculated according to the inversion relation
(5c), cf. the fourth column (labelled "corrected") in
table 2. Table 5 lists the effective elastic properties of
polycrystalline alumina, calculated according to rela-
tions (15) through (26), from the available monocrystal
data. It is evident that the Voigt and Reuss bulk modu-
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Table 1.  Elastic constants (siffnesses, i.e. elements of the stiff-
ness matrix [C]) for trigonal alumina monocrystals according to
Wachtman et al. [5], Sundara-Rao [6], Bhimasenachar [7] and
Mayer & Hiedemann [8,9].

Cij Wachtman Sundara-Rao Bhimase- Mayer & 
(GPa) et al. (original) nachar Hiedemann

C11 496.8 ± 1.8 466 465 496
C33 498.1 ± 1.4 506 563 502
C44 147.4 ± 0.2 235 233 206
C12 163.6 ± 1.8 127 124 109
C13 110.9 ± 2.2 117 117 48
C14 – 23.5 ± 0.3 94 101 38
C66 (calc.) 166.6 169.5 170.5 193.5

Table 3.  Elastic constants (siffnesses, i.e. elements of the stiff-
ness matrix [C]) for tetragonal zirconia according to Kisi &
Howard [10] and Chan [12] (cited in [10]).

Cij (GPa) Kisi & Howard Chan (original)

C11 327 263
C33 264 262
C44 59 55.9
C12 100 15
C13 62 72
C14 – –
C66 64 44

Table 4.  Elastic coefficients (compliances, i.e. elements of the
compliance matrix [S]) for tetragonal zirconia according to Kisi
& Howard [10] and Chan [12] (cited in [10]).

Cij Kisi & Chan Chan 
(GPa-1) Howard (original) (corrected)

S11 0.00346 0.00412 0.00412
S33 0.00406 0.00445 0.00445
S44 0.0170 0.0179 0.0179
S12 – 0.00096 0.00034 0.000081
S13 – 0.00059 – 0.00115 – 0.00115
S14 – – –
S66 0.0154 0.00568 0.0227

Table 2.  Elastic coefficients (compliances, i.e. elements of the compliance matrix [S]) for trigonal alumina monocrystals accor-
ding to Wachtman et al. [5], Sundara-Rao [6], Bhimasenachar [7] and Mayer & Hiedemann [8,9] (in brackets ± the incertainty of
the last digit).

Sij (GPa-1) Wachtman et al. Sundara-Rao (original) Sundara-Rao (corrected) Bhimasenachar Mayer & Hiedemann

S11 0.002353 (2) 0.00284 0.00284 0.00232 0.00218
S33 0.002170 (2) 0.00221 0.00221 0.00193 0.00202
S44 0.006940 (8) 0.00547 0.00547 0.00577 0.00504
S12 – 0.000716 (7) – 0.00095 – 0.00095 – 0.00105 – 0.00050
S13 – 0.000364 (6) – 0.00047 – 0.00043 – 0.00038 – 0.00016
S14 0.000489 (5) – 0.00152 – 0.00152 – 0.00171 – 0.00049
S66 (calc.) 0.003274 0.00758 0.00758 0.00674 0.00536



lus values calculated with Bhimasenachar's and Sun-
dara-Rao's original data violate Hill's theorem, equation
(27), because the Voigt values are smaller than the
Reuss values. For this reason they have to be discarded.

Similarly, inspection of tables 3 and 4 reveals that
Chan's original values for zirconia, which are known
only from Kisi & Howard's paper [10] as a private com-
munication [12], do not satisfy the inversion relations
(6). And again, Hill's theorem, equation (27), is violated
in this case, because the Voigt values are smaller than
the Reuss values for the tensile modulus and the bulk
modulus. Thus, for the same reason as above they have
to be discarded as well.5 Table 6 lists the effective elas-
tic properties of polycrystalline zirconia, calculated
according to relations (15) through (26), from the avail-
able monocrystal data. 

For both alumina and zirconia the effective Poisson
ratios ν, calculated via relation (14) using the Voigt and
Reuss values, respectively, of the elastic moduli, are in
generally not upper (Voigt) and lower (Reuss) bounds.
This indicates that for the Poisson ratio the Voigt and
Reuss bounds are not valid in general.

Table 7 lists the Voigt-Reuss-Hill averages calcu-
lated on the basis of the remaining, fully consistent,
monocrystal data sets. All these sets satisfy approxi-
mately the elasticity standard relations.
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Table 5.  Effective elastic properties (moduli and Poisson ratio) of polycrystalline alumina (dense, quasi-isotropic), calculated from
the monocrystal data of Wachtman et al. [5], Sundara-Rao [6], Bhimasenachar [7] and Mayer & Hiedemann [8,9].

Effective elastic Wachtman Sundara-Rao Sundara-Rao Bhimase- Mayer & 
property et al. (original) (corrected) nachar Hiedemann

EV 408.2 469.0 469.0 477.3 468.3
ER 397.1 390.5 388.9 436.4 455.4
GV 166.0 199.7 199.7 203.0 207.0
GR 160.7 158.4 159.0 169.8 199.7
KV 251.4 240 240 245.4 211.6
KR 250.4 243.3 234.2 339.0 211.0
ν ∗ 0.229 − 0.236 0.174 − 0.232 0.174 − 0.223 0.176 − 0.285 0.131 − 0.140
* The first value is the effective Poisson ratio calculated via relation (14) using the Voigt values of the elastic moduli, the second using the Reuss
values. Note that the effective Poisson ratio calculated from the Voigt values need not be an upper bound. This indicates that for the Poisson ratio
the Voigt and Reuss bounds do not hold. For this reason the indices "V" and "R" are not used for the Poisson ratio and only a range is given here.

Table 6.  Effective elastic properties (moduli and Poisson ratio)
of polycrystalline zirconia (dense, quasi-isotropic), calculated
from the data of Kisi & Howard [10] and Chan [12] (cited in
[10]).

Effective elas- Kisi & Chan Chan
tic property Howard (original) (corrected)

EV 209.9 183.0 183.0
ER 192.2 198.3 162.8
GV 82.7 73.1 73.1
GR 74.7 81.9 63.8
KV 151.8 122.9 122.9
KR 149.3 114.0 121.2
ν ∗ 0.270 − 0.285 0.252 − 0.210 0.252 − 0.276
* The first value is the effective Poisson ratio calculated via relation
(14) using the Voigt values of the elastic moduli, the second using the
Reuss values. Note that the effective Poisson ratio calculated from the
Voigt values need not be an upper bound. This indicates that for the
Poisson ratio the Voigt and Reuss bounds do not hold. For this reason
the indices "V" and "R" are not used for the Poisson ratio and only a
range is given here. 

Table 7.  Voigt-Reuss-Hill averages of the effective elastic properties (moduli and Poisson ratio) of polycrystalline (dense, quasi-
isotropic) alumina and zirconia, calculated from the data of Wachtman et al. [5] (original), Sundara-Rao [6] (corrected), Mayer &
Hiedemann [8,9] (original), Kisi & Howard [10] (original) and Chan [12] (corrected).

Alumina Zirconia

Effective elastic Wachtman Sundara-Rao Mayer & Kisi & Chan
property et al. (corrected) Hiedemann Howard (corrected)

EVRH 402.7 429.0 461.9 201.1 172.9
GVRH 163.4 179.4 203.4 78.7 68.5
KVRH 250.9 237.1 211.3 150.6 122.1
ν 0.233 0.199 0.136 0.278 0.264



COMPARISON WITH PUBLISHED DATA
AND DISCUSSION

There is an enormous amount of published data on
the (effective) elastic properties of polycrystalline alu-
mina and zirconia and this paper does not intend to give
a comprehensive review of these. The selection of sig-
nificant data must take into account the fact that even in
original papers it is not always clear, whether the data
have been actually measured or whether the authors
only cite "typical" values. Moreover, the method of
measurement is not always specified to a sufficient
degree.6 In this paper we confine ourselves to data
which have been measured by precisely specified meth-
ods (static or dynamic). Naturally, the data selection
must take into account the dependence of the elastic
moduli on temperature and porosity.7 Here we confine
ourselves to values measured at room temperature
(25 ± 3° C) on densely sintered polycrystalline samples
with a total porosity below 3 %. Assuming the theoreti-
cal (X-ray) density of alumina (α-Al2O3) as 4.0 g/cm3

and that of zirconia (t-ZrO2) as 6.1 g/cm3, our require-
ment of porosity < 3 % means, that we take into account
only effective elastic property values for specimens
with a bulk density of at least 3.88 g/cm3 and 5.92
g/cm3, for alumina and zirconia, respectively.

Table 8 lists some of the most reliable data selected
according to these criteria. Except for Lang's results
[23] (second column, values for K and ν calculated from
the measured values E and G via the elasticity standard
relations (13) and (14)), all values, including Munro's

[24], occur in the 2002 NIST databases [25-29]. In the
case of alumina, it is evident that – within statistical
errors of measurement – the agreement between calcu-
lated and experimentally measured values is generally
good for the VRH-averages calculated on the basis of
the monocrystal data of Wachtman et al. [5], while the
VRH-averages calculated on the basis of the monocrys-
tal data of Sundara-Rao [6] (corrected) and Mayer &
Hiedemann [8,9] are too high for E and G and too low
for K and ν. This is one of the reasons why the
monocrystal data of Wachtman et al. have to be consid-
ered as the most reliable ones.

In the case of zirconia the calculated VRH-averages
(cf. table 7, fifth and sixth column) are values for t-ZrO2

with 12 mol.% CeO2 and should therefore be compared in
the first place with the values in last column in table 8.
The agreement with the calculated VRH-averages
(table 7, fifth and sixth column) is generally poor for K
and ν. In the case of E and G, the VRH-averages calcu-
lated on the basis of the monocrystal data of Kisi &
Howard [10] agree well with the measured values and
have therefore to be considered as more reliable than
Chan's values [12]. The reason for the generally poor
agreement for K and ν in the case of zirconia is not quite
clear. In any case, the statements that the measured K
and ν values are higher than the predicted ones are
physically consistent and both are indicative of the fact
that polycrystalline zirconia is less compressible than it
would appear from monocrystal data. This might in
some way be related to the capacity of zirconia to
undergo – to a certain degree – plastic deformation, a
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Table 9.  Recommended approximate estimates for the effective elastic properties (moduli and Poisson ratio) of polycrystalline
(dense, quasi-isotropic) alumina and zirconia (G and K calculated from E and ν).

Effective Alumina Zirconia

elastic property with 3 mol% Y2O3 with 12 mol% CeO2 (unspecified)

E 400 210 200 205
G 163 80 76 78
K 247 184 175 180
ν 0.23 0.31 0.32 0.31

Table 8.  Measured values of the effective elastic properties (moduli and Poisson ratio) of polycrystalline (dense, quasi-isotropic)
alumina and zirconia, taken from or averaged from literature data [23-29].

Alumina Zirconia

Effective Lang Munro NIST NIST NIST
elastic (Munro) (t-ZrO2 with (t-ZrO2 with
property 3 mol.% Y2O3) 12 mol.% CeO2)

E 401.2 416 ± 30 392 ± 19 210 ± 6 195
G 159.1 169 ± 10 161 ± 4 81 ± 2 74
K 279.6 257 ± 50 247 ± 16 190 ± 11 180
ν 0.261 0.231 ± 0.001 0.221 ± 0.025 0.31 ± 0.01 0.32



fact that lead Kisi & Howard to the isostress (Reuss)
assumption in the interpretation of their strain gauge
measurement [10,11]. On the basis of the measured val-
ues available for polycrystalline ceramics, it appears
that the elastic moduli of t-ZrO2 with 3 mol.% Y2O3 are
slightly higher that those of t-ZrO2 with 12 mol.% CeO2,
while the Poisson ratio is the same.

When approximate estimates for the effective elas-
tic properties are required, either for orientational pur-
poses or as an input information for the prediction of the
effective elastic properties of dense, statistically
isotropic alumina-zirconia composites, we recommend
the values E = 400 GPa and ν = 0.23 for alumina and
E = 205 GPa and ν = 0.31 for zirconia.8 This recommen-
dation seems to be in agreement with the opinion of
Green [18]. The corresponding values for G and K, cal-
culated from these values via the elasticity standard
relations (12) and (13), are listed in table 9.

CONCLUSIONS

The calculation of the effective elastic moduli of
polycrystalline trigonal alumina (α-Al2O3) and tetrago-
nal zirconia (t-ZrO2) from the monocrystal data avail-
able in the literature has been recalled. The values esti-
mated via the Voigt-Reuss-Hill average (VRH-average)
have been compared with the most reliable measured
values, primarily from the 2002 NIST databases. Using
standard formulae and theorems of elasticity theory and
micromechanics as consistency tests for calculated and
measured values, it has been shown that certain sets of
monocrystal data have to be discarded simply for rea-
sons of consistency. It has also been shown, however,
that even VRH-averages calculated from consistent data
sets (monocrystal data sets satisfying the inversion rela-
tions (5), (6) and polycrystalline data satisfying Hill's
theorem, equation (27), and the standard elasticity rela-
tions (11) through (14)), need not be in good agreement
with experimentally measured values. In this sense,
agreement with values experimentally measured on
polycrystalline specimens provides an additional criteri-
on for the reliability of monocrystal data. In view of
this, the results of this work indicate that the monocrys-
tal data of Wachtman et al. [5] for alumina (α-Al2O3)
and the biased monocrystal data of Kisi & Howard [10]
for zirconia (t-ZrO2) are the best data currently avail-
able. For dense polycrystalline α-Al2O3 the most reli-
able values calculated from monocrystal data are 402.7
GPa for the tensile modulus, 163.4 GPa for the shear
modulus, 250.9 GPa for the bulk modulus and 0.23 for
the Poisson ratio. In this case all calculated values are in
reasonable agreement with measured values, taking into
account the relatively large statistical errors of the latter.
For dense polycrystalline t-ZrO2 values calculated from
monocrystal data are 201.1 GPa for the tensile modulus,
78.7 GPa for the shear modulus, 150.6 GPa for the bulk

modulus and 0.28 for the Poisson ratio. In this case
there is a discrepancy between calculated and measured
values, especially for the bulk modulus, the measured
values of which are approx. 180 ± 10 GPa and the Pois-
son ratio, the measured values of which are 0.31-0.32.
This discrepancy for the bulk modulus and the Poisson
ratio is indicative the fact that polycrystalline zirconia is
less compressible than it would appear on the basis of
monocrystal data alone, a fact that might be connected
to the capability of zirconia to undergo to a certain
extent plastic deformation. When approximate estima-
tes for the effective elastic properties are required, we
recommend the values E = 400 GPa and ν = 0.23 for
alumina and E = 205 GPa and ν = 0.31 for zirconia
(when the dopant is unspecified). When more detailed
information is lacking, these approximate values, refer-
ring to dense and "pure" alumina and zirconia, respec-
tively, can be used as benchmark values for fitting the
dependence of effective elastic properties of porous alu-
mina and zirconia (cf. Part 4) as well as for predicting
the effective elastic properties of dense, statistically
isotropic alumina-zirconia composite ceramics (cf. Part
5 of this series of papers).

Footnotes:
1 The order of magnitude of this critical grain size is 0.5 µm and
below, cf. e.g. [4].
2 According to Howard & Kisi [11] the Reuss approximation
works well for materials with a capacity for plastic deforma-
tion, such as metals and transformation-toughened ceramics.
3 Quasi-isotropy does not necessarily require the individual
grains to be isometric. But in the case of anisometric grains
(e.g. tabular alumina or the non-equiaxed alumina grains pos-
sibly occurring due to excessive grain growth) these are not
allowed to have a preferential orientation and their length has
to be much smaller than the smallest dimension of the macro-
scopic body. That means, the results of this paper cannot be
expected to apply to textured specimens, to alumina fibers or
thin layers.
4 When the Voigt and Reuss bounds are not too far apart, the
difference between arithmetic average and other types of aver-
ages, e.g. the geometric or the harmonic average, is negligibly
small.
5 Interestingly, of the sets of values discussed above, all three
violating the inversion relations are also violating Hill's theo-
rem.
6 Fortunately, a comparison of data for alumina listed in the
NIST database [26,27] shows that e.g. the tensile modulus
shows no significant differences when measured by a static
method (e.g. three-point bending) or a dynamical method (e.g.
resonant frequency or ultrasonic). From a physical viewpoint,
this means that the difference between isothermal and adiabat-
ic elastic moduli is small.
7 A grain size dependence need not be taken into account, as
long as the volume fraction of the interface regions (phase
boundaries of small but finite thickness) are negligible. This is
the case for typical submicron ceramics but might not be the
case for nanomaterials, including nanocomposites.
8 With respect to the relatively large statistical errors of meas-
urement, these values should be sufficiently accurate. They
should be used in cases where more detailed information con-
cerning the individual samples in question is lacking.
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V tomto èlánku je proveden výpoèet makroskopických
elastických modulù polykrystalického oxidu hlinitého (α-
Al2O3, trigonální) a oxidu zirkonièitého (t-ZrO2, tetragonální)
ze složek tensoru elasticity, resp. inverzního tensoru elasticity
(tj. ze složek matice tuhosti, resp. poddajnosti) urèených pro
monokrystaly α-Al2O3 a t-ZrO2. Vypoètené hodnoty tzv.
prùmìrù "VRH" (Voigt-Reuss-Hill) jsou porovnány s nejspo-
lehlivìjšími hodnotami namìøenými pro polykrystalický α-
Al2O3 a t-ZrO2 (databáze NIST z roku 2002). Pro hutný poly-
krystalický α-Al2O3 jsou nejspolehlivìjší hodnoty vypoètené
z dat urèených pro monokrystaly 402,7 GPa pro tahový modul
(Youngùv modul), 163,4 GPa pro smykový modul, 250,9 GPa
pro objemový modul (modul stlaèitelnosti) a 0,23 pro Pois-
sonùv pomìr. V tomto pøípadì jsou všechny vypoètené hodno-
ty v pomìrnì dobré shodì s namìøenými hodnotami (u kterých
je tøeba brát v úvahu relativnì velké statistické chyby mìøení).
Pro hutný polykrystalický t-ZrO2 jsou hodnoty vypoètené z dat
urèených pro monokrystaly 201,1 GPa pro tahový modul, 78,7
GPa pro smykový modul, 150,6 GPa pro objemový modul a
0.28 pro Poissonùv pomìr. V tomto pøípadì je mezi vypoètený-
mi a namìøenými hodnotami patrný rozdíl, a to zejména u obje-
mového modulu, jehož namìøené hodnoty jsou v oblasti cca.
180 ± 10 GPa, a u Poissonova pomìru, jehož namìøené hodno-
ty jsou 0,31-0,32. Pro pøibližný odhad makroskopických elas-
tických vlastností hutných polykrystalických jednofázových
materiálù doporuèujeme pro α-Al2O3, resp. t-ZrO2 použít násle-
dující hodnoty E = 400 GPa a ν = 0,23, resp. E = 205 GPa a
ν = 0,31.


