
INTRODUCTION

In Parts 1, 2 and 3 of this series of papers, the lin-
ear theory of elasticity has been summarized for
anisotropic and isotropic materials [1], the fundamen-
tals of micromechanical modeling have been reviewed
[2], and the calculation of effective elastic moduli of
polycrystalline alumina and zirconia from monocrystal
data, using the Voigt-Reuss-Hill average, has been
recalled and critically reviewed [3] by comparing with
values reported in the literature and internet data bases,
so that we are now in a position to estimate reliable val-
ues for the effective tensile modulus of the fully dense
ceramics (i.e. values referring to materials with zero
porosity) with sufficient accuracy. With a trivial calcu-
lation it has been shown that the traditional textbook
version of the so-called Coble-Kingery relation for the
tensile modulus of porous ceramics (which has been
originally derived for the shear modulus [4]) is in error
and its correct version has been proposed [5]. Using
micromechanical considerations and the so-called func-
tional equation approach, several new exponential and
power-law relations have been proposed, largely in
analogy with the effective viscosity relations of suspen-
sion rheology (Mooney relation, Krieger relation) [6,7].
Finally, using heuristic arguments, a completely new
relation has been derived [8], which reveals an interes-

ting feature by being in formal contrast to the so-called
Hasselman relation [9] (cf. Part 2 of this series of papers
[2]) and seems to be one of the most elegant relations
for fitting purposes. Its advantages are utmost simplici-
ty while allowing for a critical porosity φC and reducing
to the (correct version of the) Coble-Kingery relation in
the case φC = 1 and to the Dewey-Mackenzie relation
(with the porosity E/E0 = 1 - 2φ, the effective tensile
modulus of the porous ceramics E and the tensile mo-
dulus of the dense ceramics E0) in the dilute limit
(φ → 0) when φC = 1. It is the principal aim of this paper
to provide a detailed comparison of the fitting perform-
ance of the relations mentioned when applied to porous
alumina and porous zirconia ceramics. This comparison
is performed with relatively good and with extremely
bad data sets, respectively, of adiabatic tensile moduli
measured by a dynamical method (the resonant fre-
quency technique). The data reported in this paper con-
cern porous alumina and zirconia prepared by starch-
consolidation casting, a new shaping method the princi-
ples and experimental details of which are given else-
where [10-16]. Starch consolidation casting exploits the
ability of starch to swell in hot water for the body-for-
mation step. Two starch types, potato starch and corn
starch, differing both in size and in shape (but not very
much in aspect ratio), have been used for both alumina
and zirconia.
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In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of
porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alu-
mina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of
starch, potato starch (median size D50 =47.2 µm) and corn starch (median size D50 =13.7 µm). The dependence of effective
tensile moduli E, on the porosity φ, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumi-
na and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations,
including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation
E/E0 = (1 - φ)·(1 - φ/φC), developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical
porosity φC), over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed
exponential relation E/E0 = exp [-Bφ/(1 - φ)] and the well-known Phani-Niyogi relation E/E0 = (1 - φ/φC)N might be
preferable.



Preliminaries

For easy reference, we briefly mention and label the
relations used in this paper for describing the porosity
dependence of the tensile moduli. For theoretical back-
ground and a more detailed discussion of the individual
relations cf. [2, 4-8] and the references cited therein.

Model 1 (simple exponential relation for spherical
pores), cf. [2, 6]:

(1)

Model 2 (Spriggs relation for pores with arbitrary
shape), cf. [2, 6]:

(2)

Model 3 (exponential relation for spherical pores,
yielding E = 0 as φ = 1), cf. [2, 7]:

(3)

Model 4 (exponential relation for pores with arbi-
trary shape, yielding E = 0 as φ = 1), cf. [2, 7]:

(4)

Model 5 (exponential relation for spherical pores,
allowing for a critical porosity φC, for which E = 0), cf.
[2, 7]:

(5)

Model 6 (Mooney-type exponential relation for
pores of arbitrary shape, allowing for a critical porosity
φC, for which E = 0), cf. [2, 7]:

(6)

Model 7 (Coble-Kingery relation, power-law rela-
tion for spherical pores), cf. [2, 4-6]:

(7)

Model 8 (Archie-type power-law relation for pores
of arbitrary shape) [2, 6]:

(8)

Model 9 (Phani-Niyogi relation, a Krieger-type
power-law relation for pores of arbitrary shape, allow-
ing for a critical porosity φC, for which E = 0) [2]:

(9)

Model 10 (Hasselman relation [9], formally rewrit-
ten with φC, cf. the discussion in [2]):

(10)

Model 11 (a new relation, proposed in [8]):

(11)

In all these relations, except for the Hasselman
relation (10), the fit parameter φC can be assigned the
physical meaning of a critical porosity, for which the
integrity of the structure breaks down, i.e. E = 0. This
breakdown phenomenon has can be interpreted as tres-
passing a percolation threshold, cf. [17,18]. Since φC is
a porosity, evidently the condition 0 < φC < 1 must be
fulfilled. In this sense values >1 and <0 (when obtained
as a result of fitting) are unphysical and discredit a fit
model. 

The fit parameters B and N can be assigned a cer-
tain physical meaning by defining an intrinsic tensile
modulus [E] in analogy to the so-called intrinsic visco-
sity [η] in suspension rheology [2,19]. It can be shown
that B = -[E] and N = -[E]φC. For isolated spherical
pores the intrinsic tensile modulus is [E] = -2, just as the
intrinsic viscosity of a dilute suspension with (non-
interacting) rigid spherical particles is [η] = 2.5, i.e. the
Einstein value, cf. [20]. Deviations of the intrinsic ten-
sile modulus [E] from [E] = -2 might in principle be
interpreted as an indication of deviations of the pore
shape (aspect ratio) from sphericity (isometry).

The tensile modulus of the dense ceramic E0 can
either be treated as a free fit parameter (for extrapolat-
ing measured data to the zero porosity value) or as a
constant assumed to be known (from theoretical calcu-
lations, cf. [3]). For the purpose of this paper we con-
sider E0 as a free fit parameter. The standard values of
E0 = 400 GPa for dense alumina (α-Al2O3) and E0 = 210
GPa for dense zirconia (tetragonal ZrO2 with 3 mol.%
Y2O3) can of course serve as a guideline for assessing
whether the value of E0 found by fitting is a physically
reasonable from the physical point of view. Needless to
say, since E0 is a tensile modulus it must necessarily be
positive. In this sense values <0 (when obtained as a
result of fitting) are unphysical and discredit the fit
model. 

EXPERIMENTAL

Porous alumina and zirconia ceramics were prepa-
red from commercial submicron powder types CT-3000
SG (Alcoa, Germany) and TZ-3YE (Tosoh, Japan) by
starch consolidation casting from aqueous suspensions
deflocculated with the commercial deflocculant
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Dolapix CE 64 (Zschimmer & Schwartz, Germany),
containing 75-80 wt.% and 70-72 wt.% alumina and zir-
conia, respectively (with the maximum attainable solids
content depending on the starch content) and nominal
starch contents of 5, 10, 15, 30 and 50 vol.% (with
respect to the oxide powder content, based on an
approximate native starch density of 1.50 g/cm3).

The alumina powder is a superground, thermally
reactive powder with high purity (>99.8 wt.% Al2O3)
and a median particle size of D50 = 0.7 µm, the zirconia
powder is tetragonal zirconia with a median particle
size of D50 = 0.3 µm, containing 3 mol.% (5 wt.%) Y2O3

and 0.25 wt.% Al2O3. Two types of native starch were
used: potato starch (Naturamyl, Czech Republic) with a
median size of D50 = 47.2 µm (starch globules in the
native state, i.e. before swelling) and more or less
rounded shape and corn starch (Dr Oetker, Czech Repu-
blic) with a median size of D50 = 13.7 µm and a more or
less polyhedral shape. Note that, in spite of the differ-
ences in shape, both starch types are approximately iso-
metric (i.e. with an aspect ratio close to unity). 

After mixing, the starch-containing suspensions
were cast into brass molds and heated up to allow for
starch swelling (and thus body formation). After
demolding the green bodies were dried and the as-dried
alumina and zirconia samples were fired according to a
special schedule at temperatures of 1570 and 1400°C,
respectively. Linear shrinkage due to firing is 14-16 %
for alumina and 23-25 % for zirconia, largely indepen-
dent of the nominal starch content (or, equivalently, the
porosity after firing). Further experimental details of
sample preparation are reported elsewhere [14].

The as-fired specimens were of cylindrical shape
with a diameter of approx. 4 mm and a length between
50 and 80 mm. The bulk density ρ was determined by
the Archimedes method and the total porosity φ was cal-
culated from the bulk density and the theoretical densi-
ty ρ0 according to the standard formula

(12)

where the theoretical density of alumina and (tetrago-
nal) zirconia was assumed to be 4.0 g/cm3 and 6.1 g/cm3,
respectively. The effective tensile modulus of the
porous ceramics was measured at the Institute of Rock
Structure and Mechanics (Academy of Sciences of the
Czech Republic) by the resonant frequency technique,
using the Erudic Resonant Frequency Tester (CNS Elec-
tronic, UK) in the frequency range 0-100 kHz and cal-
culated via the approximate formula

(13)

where E is the effective tensile modulus, ρ the bulk den-
sity, L the specimen length and F the resonant frequency.
To apply this approximate formula the length-to-diameter
ratio of the specimens must be between 5 and 20 [21-23].

Fitting of the E - φ - dependence data sets was per-
formed using the non-linear regression software pack-
age CurveExpert 1.3 (Daniel Hyams, USA), without
initial guesses for the fit parameters wherever possible
(by default, all fit parameters were set equal to unity).

RESULTS AND DISCUSSION

The measured data are listed in tables 1 and 2. Each
data pair (E and φ) refers to one measured specimen, i.e.
information on statistical errors is not available. There-
fore, as a first step to roughly assess the quality of the
data, we invoke the micromechanical bounds on the
effective tensile modulus, cf. [2]. Figures 1 and 2 show
the measured data together with the Voigt bound and the
Hashin-Shtrikman upper bound. Obviously all data
obey the Voigt bound. One data point of the porous alu-
mina (prepared with potato starch), however, is higher
than the Hashin-Shtrikman upper bound, which is
indicative of a measurement error. Moreover, mere
visual inspection reveals that all our alumina data are
more ill-behaved than the zirconia data. While the zir-
conia data (Z-P-data and Z-C-data) exhibit a gentle,
almost linear, decrease of the E - φ - dependence, the
alumina data exhibit unusual features, such as an appa-
rently convex E - φ - dependence (A-P-data) or a steeply
decreasing (concave) E - φ - dependence (A-C-data).
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Table 1.  Measured effective tensile moduli (E in GPa) of
porous alumina prepared by SCC with potato starch (A-P-data)
and corn starch (A-C-data), respectively.

Porosity Tensile modulus Porosity Tensile modulus
φ (A-P) E (A-P) φ (A-C) E (A-C)

0.178 215 0.202 305
0.266 193 0.236 223
0.298 186 0.268 217
0.397 159 0.353 119
0.566 38 0.533 42

Table 2.  Measured effective tensile moduli (E in GPa) of
porous zirconia prepared by SCC with potato starch (Z-P-data)
and corn starch (Z-C-data), respectively.

Porosity Tensile modulus Porosity Tensile modulus
φ (Z-P) E (Z-P) φ (Z-C) E (Z-C)

0.132 136 0.073 167
0.191 113 0.158 136
0.249 96 0.200 124
0.315 69 0.298 85
0.424 38 0.415 52



It is not the purpose of this paper, of course, to discuss
the possible origins of these measurement errors (which
can be at the same time errors in E and in φ). On the
contrary, it will be examined what can be expected from
fitting bad data sets (here alumina) on the one hand and
good data sets (here zirconia) on the other and to what
extent the information obtained from fitting with an
appropriate model can be interpreted in reasonable
physical terms.

Figures 3 through 10 show the fit curves and tables
3 through 10 list the correlation coefficients and the val-
ues of the relevant fit parameters. 
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Figure 1.  Effective tensile moduli measured for porous alumi-
na prepared by SCC (starch-consolidation casting) with potato
starch (A-P-data, full square) and corn starch (A-C-data, open
square), respectively, in dependence of the porosity; Voigt
bound (full line) and upper Hashin-Shtrikman bound (dashed
line) for porous alumina.

Figure 2.  Effective tensile moduli measured for porous zirco-
nia prepared by SCC (starch-consolidation casting) with potato
starch (Z-P-data, full square) and corn starch (Z-C-data, open
square), respectively, in dependence of the porosity; Voigt
bound (full line) and upper Hashin-Shtrikman bound (dashed
line) for porous zirconia.

Table 3.  Fit parameters (E0 in GPa) for the tensile modulus
porosity dependence fitted by exponential models; alumina pre-
pared by SCC with potato starch.

model corr. E0 φC B initial remark
number coeff. guess

1 0.877 311.3 - - -
2 0.906 385.4 - 2.764 -
3 0.867 390.9 - -
4 0.963 295.4 - 1.185 -
5 0.932 354.4 1.713 - E0 = 400, φC unphysical

φC = 1.25
6 0.999 232.9 0.643 0.382 E0 = 400 convex curve

Table 5.  Fit parameters (E0 in GPa) for the tensile modulus
porosity dependence fitted by exponential models; alumina pre-
pared by SCC with corn starch.

model corr. E0 φC B initial remark
number coeff. guess

1 0.810 352.7 - - -
2 0.991 990.2 - 5.945 - E0 too high
3 0.967 448.9 - - -
4 0.985 594.5 - 2.849 -
5 0.976 476.7 0.819 -
6 0.991 1031.9 -12.2 6.242 E0 = 400, E0 too high

φC = 1.25 φC unphysical

Table 4.  Fit parameters (E0 in GPa) for the tensile modulus
porosity dependence fitted by power-law and related models;
alumina prepared by SCC with potato starch.

model corr. E0 φC N initial remark
number coeff. guess

7 0.936 350.7 - - -
8 0.938 333.8 - 1.843 -
9 - - - - - fit unsuccessful

10 0.917 359.5 -0.63 - - φC unphysical
11 0.936 343.7 1.056 - -

Table 6.  Fit parameters (E0 in GPa) for the tensile modulus
porosity dependence fitted by power-law and related models;
alumina prepared by SCC with corn starch.

model corr. E0 φC N initial remark
number coeff. guess

7 0.912 397.8 - - -
8 0.989 740.8 - 4.107 -
9 - - - - - fit unsuccessful

10 0.989 -1081 0.053 - - φC unphysical
φC too low

11 0.978 530.1 0.596 - -
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Figure 3.  Tensile modulus porosity dependence fitted by expo-
nential models; alumina prepared by SCC (starch-consolidation
casting) with potato starch.

Figure 4.  Tensile modulus porosity dependence fitted by
power-law and related models; alumina prepared by SCC
(starch-consolidation casting) with potato starch.

Figure 5.  Tensile modulus porosity dependence fitted by expo-
nential models; alumina prepared by SCC (starch-consolidation
casting) with corn starch.

Table 7.  Fit parameters (E0 in GPa) for the tensile modulus
porosity dependence fitted by exponential models; zirconia pre-
pared by SCC with potato starch.

model corr. E0 φC B initial remark
number coeff. guess

1 0.878 154.8 - - - E0 too low
2 0.990 233.9 - 3.890 - E0 too high
3 0.997 181.9 - - -
4 0.999 189.6 - 2.157 -
5 0.999 185.3 0.908 - E0 = 200, φC too high

φC = 0.5
6 0.999 184.0 0.888 1.957 E0 = 200, φC too high

φC = 0.5

Table 9.  Fit parameters (E0 in GPa) for the tensile modulus
porosity dependence fitted by exponential models; zirconia pre-
pared by SCC with corn starch.

model corr. E0 φC B initial remark
number coeff. guess

1 0.932 178.3 - - - E0 too low
2 0.990 216.5 - 3.118 -
3 0.998 198.9 - - -
4 0.999 194.2 - 1.880 -
5 0.999 196.9 0.912 - - φC too high
6 0.999 194.2 0.998 1.878 - φC too high

Table 8.  Fit parameters (E0 in GPa) for the tensile modulus
porosity dependence fitted by power-law and related models;
zirconia prepared by SCC with potato starch.

model corr. E0 φC N initial remark
number coeff. guess

7 0.955 167.6 - - - E0 too low
8 0.996 209.1 - 2.917 -
9 0.999 188.2 0.596 1.297 E0 = 200, [E] = -2.176

φC = 0.5
10 0.984 278.7 -0.18 - - E0 too high

φC unphysical
11 0.998 199.2 0.646 - -

Table 10.  Fit parameters (E0 in GPa) for the tensile modulus
porosity dependence fitted by power-law and related models;
zirconia prepared by SCC with corn starch.

model corr. E0 φC N initial remark
number coeff. guess

7 0.984 188.5 - - -
8 0.997 204.8 - 2.445 -
9 0.990 195.8 0.638 1.275 E0 = 200, [E] = -1.998

φC = 0.5
10 0.987 221.1 -0.38 - - E0 too high

φC unphysical
11 0.998 202.7 0.758 - -



It is evident that Models 1 and 2 (simple exponen-
tial and Spriggs relation) are generally too rigid for
good fitting. Even for good data sets they are not able to
represent the course of the E - φ - dependence in a sat-
isfactory way, and the extrapolated E0 values are either
too high or too low. Moreover, these model suffer from
the principal drawback, that they do not reduce to E = 0
for φ = 1. Model 10, the Hasselman relation, which has
been proposed very early (1962) [9] in order to avoid
this disadvantage of the Spriggs relation (Model 2),
often gives poor fits (according to the correlation coef-
ficients), badly estimated or unphysical E0 values and
usually unphysical φC values. That means, the parameter
φC occurring in the Hasselman relation cannot be inter-
preted as a critical porosity, an evident disadvantage for
a model that should retain some physical significance
and intuitive connection to reality.
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Figure 6.  Tensile modulus porosity dependence fitted by
power-law and related models; alumina prepared by SCC
(starch-consolidation casting) with corn starch.

Figure 9.  Tensile modulus porosity dependence fitted by expo-
nential models; zirconia prepared by SCC (starch-consolidation
casting) with corn starch.

Figure 10.  Tensile modulus porosity dependence fitted by
power-law and related models; zirconia prepared by SCC
(starch-consolidation casting) with corn starch.

Figure 7.  Tensile modulus porosity dependence fitted by expo-
nential models; zirconia prepared by SCC (starch-consolidation
casting) with potato starch.

Figure 8.  Tensile modulus porosity dependence fitted by
power-law and related models; zirconia prepared by SCC
(starch-consolidation casting) with potato starch.



The modified exponential relations, Models 3 and
4, seem to be rather useful for fitting. Without the
necessity of initial guesses they usually give satisfacto-
ry fits (with correlation coefficients almost as good as
for the more complicated Models 5 and 6) and (in con-
trast to the latter) do not show any tendency to numeri-
cal artefacts (cf. table 3, Model 5 and table 5, Model 6)
or to physical artefacts, such as convex curves (cf. table
3, Model 6). Moreover, for the well-behaved zirconia
data sets (Z-P-data and Z-C-data) Models 5 and 6 result
in φC close to unity (cf. tables 7 and 9), which indicates
that the possible advantage of Models 5 and 6 (i.e. the
principal capability of predicting φC values) is de facto
lost and that the possibly additional effort with initial
guesses (due to the one additional fit parameter) is not
justified. Mere visual inspection of the graphs on fig-
ures 7 and 9 shows that Models 5 and 6 exhibit a ten-
dency to crudely overestimate the critical porosity φC

and are thus useless for predicting approximate φC va-
lues for practical purposes. Therefore, Models 3 and 4
should generally be preferred to Models 5 and 6.

Model 7, the Coble-Kingery relation with E0 as a
free fit parameter, is a relatively rigid, i.e. unflexible,
model. The fitting is often poor, even for well-behaved
data (Z-P-data and Z-C-data, figures 8 and 10) the cor-
relation coefficients are usually much worse than for
modified exponential models (Models 3 - 6), cf. tables 3
- 10. The extrapolated E0 values determined by non-lin-
ear regression show a tendency of being too low, cf. fi-
gures 6, 8, 10. A clear advantage of this model is the fact
that, as a consequence of its relative unflexibility, it is
not prone to artefacts, in contrast to the modified expo-
nential models, especially the more complicated Models
5 and 6. It can therefore be recommended for ill-behaved
data sets (A-P-data and A-C-data, figures 4 and 6). 

Model 8, the Archie-type power-law relation,
seems to be equally resistant against artefacts and has
the advantage of being more flexible for fitting purpos-
es, which often improves the correlation coefficient. In
this case, formally N = -[E], since Model 8 can be con-
sidered as a special case of Model 9 (see below) where
φC is set to unity. The physical significance of the [E]
value (intrinsic tensile modulus) thus determined, is
however obscured just by the fact that no allowance is
made for the possible occurrence of a critical porosity,
since this affects the curvature of the corresponding fit
curve in an artificial way. Therefore, for principal rea-
sons no attempts should be made to interpret deviations
of the exponent determined by fitting with this model as
deviations of the pore shape from sphericity. Although
it could be argued that a similar problem occurs with
Model 4, it seems that the problem is less severe in this
case. The probable reason is that in modified exponen-
tial models the actual value of the critical porosity
(which is usually overestimated anyway) does not affect
the curvature of the fit curve to any sensible degree.

Model 9, the Phani-Niyogi relation, is one of the
most flexible relations for fitting (similar to Model 6 it
is a relation with three fit parameters) and, being a
power-law model, it has certain principal advantages
from a theoretical point of view, cf. [20]. However, due
to the large number of fit parameters initial guesses are
usually required even in the case of well-behaved data
(Z-P-data and Z-C-data, figures 8 and 10). Interestingly,
for ill-behaved data (A-P-data and A-C-data, figures 4
and 6) fitting with Model 9 was not successful, even
with initial guesses. 

In the case of Model 9 attempts are justified to
interpret the intrinsic tensile modulus [E] calculated
from N = -[E]φC, using the φC value determined from fit-
ting, as a measure of pore sphericity (isometry). In our
opinion, the only alternative relation for which such an
interpretation is possible is Model 4 (with B = -[E]) and,
with certain reservations (cf. the general objections
against Model 6 and arguments in favor of Model 4 dis-
cussed above), Model 6.

Comparing the [E] values for the well-behaved zir-
conia data (tables 7 - 10) we have [E] values from
-1.957 to -2.157 for the zirconia prepared by SCC with
potato starch (Z-P-data, approximately spherical pore
shape) and [E] values from -1.878 to -1.998 for the zir-
conia prepared by SCC with potato starch (Z-C-data,
polyhedral pore shape). The close proximity of these
values to the value for spherical pores ([E] = -2) is
indicative of the approximate isometry of the pores in
both cases (potato starch and corn starch). Measurable
deviations from this value are to be expected only for
strongly anisometric (i.e. elongated/prolate or flat-
tened/oblate) pores. For the ill-behaved alumina data
(tables 3 - 6), [E] values from Model 9 are not available
and [E] va-lues from Model 6 have to be discarded
because of the above discussed fitting artefacts. The
remaining [E] va-lues resulting from Model 4 are
approx. -1.2 and approx. -2.8 for the A-P-data and the
A-C-data, respectively. This large scatter around the
value [E] = -2 indicates that, as expected, ill-behaved
data sets cannot be used to extract information on the
intrinsic tensile modulus or deviations of the pore shape
from sphericity (isometry).

Further, as expected, it is difficult to extrapolate ill-
behaved data sets in a way to estimate E0 values which
are on the one hand consistent with the measured data
(as viewed by mere visual inspection) and on the other
hand realistic from a physical point of view. Thus, while
it is clear that the E0 value for dense alumina must be
approx. 400 GPa (cf. [3]), the E0 values determined
from fitting our alumina data sets (even after excluding
the convex curve value of E0 = 233 GPa obtained from
the fit via Model 6, cf. table 3, and the evidently inad-
missible value of E0 = -1081 GPa obtained from the
Hasselman relation, Model 10, cf. table 6) are
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295-391 GPa, i.e. too low, for the A-P-data. For the A-
C-data the E0 values are 353 - 1032 GPa, i.e. exhibit an
enormous scatter, from too low up to extremely too high
values.  In the case of well-behaved data sets (zirconia
data, cf. tables 7 - 10) the E0 values determined by fit-
ting are  155 - 234 GPa for the Z-P-data and 178 - 217
GPa for the Z-C-data when Model 10 (the fit using the
Hasselman relation) is excluded. When bad fit curves
(with low correlation coefficients) based on Models 1, 2
and 7 are excluded, one obtains 182 - 209 GPa for the
Z-P-data and 194 - 205 GPa for the Z-C-data. Since the
E0 value for dense zirconia (with 3 mol.% Y2O3) must be
approx. 210 GPa (cf. [3]), these results are in rather
close agreement with reality, possibly with a general
tendency of all fit models to slightly underestimate the
E0 values, even in the case of well-behaved data.

Finally, the fitting results obtained via Model 11
deserve special attention. For the well-behaved data
(zirconia data) the E0 values determined by Model 11
exhibit the smallest difference of all (199.2 and 202.7
GPa for the Z-P-data and Z-C-data, respectively, cf.
tables 8 and 10). This is reasonable from a physical
point of view, since the E0 values refer to the dense (i.e.
pore-free) zirconia and should therefore be dependent
only on the zirconia powder used (which is identical in
both cases), but not on the starch type used. The critical
porosity φC determined via Model 11 attains values of
0.646 and 0.758 for the Z-P-data and Z-C-data. These
values are slightly higher than the φC values obtained
from fitting with Model 9 (Phani-Niyogi relation),
which are 0.596 and 0.638, respectively, but still corre-
spond well to the values which can be estimated by
visual inspection of the graphs (figures 8 and 10). More-
over, Model 11 has two advantages over and beyond
Model 9: First, being a two-parameter model, fitting can
be performed without initial guesses (cf. tables 8 and 10)
and second, being extremely simple and relatively rigid,
it can be applied in the case of ill-behaved data, where
Model 9 usually fails altogether, due to convergence
problems with the non-linear fitting procedure (cf. tables
4 and 6). In the case of the convex curve data (A-P-data,
cf. figure 4 and table 4) the φC value attains values close
to unity (1.056), i.e. it seems that in such pathological
cases Model 11 approaches the very rigid (and always
concave) Coble-Kingery relation (Model 7).

Thus in all cases in which the pores are not extre-
mely anisotropic (and where, therefore, the intrinsic ten-
sile modulus [E] is without concern) Model 11 is the best
fit model. It is true that Model 9 can provide slightly bet-
ter fits (due to the fact that the curvature in Model 11 is
automatically coupled to the value of φC, while in Model
9 it can be adjusted independently via N) and slightly
more potentially extractable information (since, due to
the additional fit parameter N, a value for the intrinsic
tensile modulus [E] is accessible). Because of its extreme

simplicity, however, Model 11 is applicable in situations
where Model 9, the Phani-Niyogi relation, fails. In this
sense, Model 11 is more rigid (because it contains one
parameter less) and more robust (because initial guesses
are not needed) than Model 9. Being a two-parameter fit
model, however, it is more flexible than Model 7 (Coble-
Kingery relation) and includes an additional, practically
significant parameter (the critical porosity φC). 

When an attempt is made to quantify pore anisom-
etry by deviations of the intrinsic tensile modulus [E]
from the spherical pore value [E] = -2, Model 4 (also a
two-parameter model) should be the model of choice.
The additional parameter φC introduced in Model 6
makes this model more complicated (initial guesses
needed) and too fragile (for ill-behaved data it may pro-
duce physical artefacts such as convex curves, cf. figure
3, and numerical artefacts such as negative φC values, cf.
table 5). Moreover, even for well-behaved data the φC

values (0.888 - 0.998 for zirconia data, cf. tables 7 and
9) are evidently too high, as can be seen by visual
inspection of the corresponding graphs (figures 7 and
9), so that the physical significance of the φC value
determined via Model 6 remains highly dubious at best.

CONCLUSIONS

In this fourth paper of a series on the effective elas-
tic properties of alumina-zirconia composite ceramics
the influence of porosity on the effective tensile modu-
lus of alumina and zirconia ceramics was discussed. The
examples investigated are alumina (CT-3000SG, Alcoa)
and zirconia (TZ-3YE, Tosoh) ceramics prepared by
starch consolidation casting using two different types of
starch, potato starch (median size D50 = 47.2 µm) and
corn starch (median size D50 = 13.7 µm). The depen-
dence of effective tensile moduli E, on the porosity φ,
measured for porosities in the ranges of approx. 19-55
vol.% and 10-42 vol.% for alumina and zirconia,
respectively, using a resonant frequency technique, was
evaluated by fitting with various model relations,
including newly developed ones. A detailed comparison
of the fitting results obtained with 11 different relations
(fit models) for ill-behaved (alumina) and well-behaved
(zirconia) data sets suggests the superiority of the new
relation E/E0 = (1 - φ)·(1 - φ/φC), developed by the
authors (with the tensile modulus of the dense ceramic
material E0 and the critical porosity φC), over most other
existing fit models. The fitted curves are evidently in
good agreement with the course of the data (as can be
confirmed by visual inspection of the graphs) and the E0

and φC values determined by fitting with this model
seem to be among the most reasonable ones from a
physical viewpoint (e.g. E0 = 199 - 203 GPa and
φC = 0.646 - 0.758 for the well-behaved zirconia data).
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Only for special purposes and well-behaved data
sets the recently proposed modified exponential relation
E/E0 = exp [-Bφ/(1 - φ)] and the well-known Phani-
Niyogi relation E/E0 = (1 - φ/φC)N might be preferable. 

In the case of good data sets e.g. the latter provides
realistic values at the same time for φC (0.596-0.638 for
our zirconia) and for the intrinsic tensile modulus [E]
(between -1.998 and -2.176 for our zirconia), which can
be calculated from N = -[E]φC. However, this three-
parameter model usually needs initial guesses for the
parameters and often fails altogether (due to conver-
gence problems) when ill-behaved data (here the alumi-
na data) have to be fitted. 

In cases where the Phani-Niyogi relation fails, the
modified exponential model E/E0 = exp [-Bφ/(1 - φ)] is
the only relation that can be recommended for extracting
information on the intrinsic tensile modulus [E] = -B.
Deviations from the spherical pore value [E] = -2 can in
principle be interpreted in terms of deviations of the
pore shape from sphericity (isometry). In practice, how-
ever, such an interpretation is possible only when very
good and precise data sets are fitted and when the pores
are distinctly anisometric. 

For porous materials with approximately isometric
pores (whether rounded or polyhedral), i.e. where infor-
mation on the intrinsic tensile modulus [E] is irrelevant,
the new two-parameter relation E/E0 = (1 - φ)·(1 - φ/φC),
is doubtlessly the best compromise. For well-behaved
and very precise data sets it can be replaced by the
three-parameter Phani-Niyogi relation (the most com-
plicated and thus most "flexible" model), while for ill-
behaved or very unprecise data it might be replaced by
(if it does not by itself reduce to) the one-parameter
Coble-Kingery relation (the simplest and thus most
"rigid" model).
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MAKROSKOPICKÉ ELASTICKÉ VLASTNOSTI
KOMPOZITNÍ KERAMIKY NA BÁZI Al2O3 A ZrO2

ÈÁST 4.  YOUNGOVY MODULY PORÉZNÍ KORUNDOVÉ
A ZIRKONIÈITÉ KERAMIKY

WILLI PABST, EVA GREGOROVÁ,
GABRIELA TICHÁ, EVA TÝNOVÁ

Ústav skla a keramiky,
Vysoká škola chemicko-technologická v Praze,

Technická 5, 166 28 Praha 6

V tomto ètvrtém èlánku z øady prací zabývajících se
makroskopickými elastickými vlastnostmi kompozitní kerami-
ky na bázi Al2O3 a ZrO2 je diskutován vliv pórovitosti na
Youngùv modul korundové a zirkonièité keramiky. Studována
je porézní korundová (CT-3000SG, Alcoa) a zirkonièitá
(TZ-3YE, Tosoh) keramika pøipravovaná tzv. škrobovým litím
za použití dvou rùzných typù škrobu: bramborového škrobu
s pomìrnì velkými (D50 = 47.2 µm), témìø kulovitými èástice-

mi a kukuøièného škrobu s pomìrnì malými (D50 = 13.7 µm),
polyedrickými èásticemi. Závislost efektivního Youngova mod-
ulu E na pórovitosti φ byla namìøena (pro pórovitosti v oblasti
cca. 10-50 obj.%) pomocí metody resonanèních frekvencí a
vyhodnocena proložením namìøených dat rùznými modelový-
mi vztahy, vèetnì novì vyvinutých. Detailní srovnání výsledkù
fitování pomocí 11 rùzných vztahù (fitovacích modelù) pro
korundová resp. zirkonièitá data ukazuje výhodu námi vyvi-
nutého nového vztahu E/E0 = (1 - φ)·(1 - φ/φC), kde E0 je
Youngùv modul hutné, tj. neporézní keramiky a φC je kritická
pórovitost, oproti vetšinì jiných fitovacích modelù. Fitovací
køivky jsou evidentnì v dobrém souladu s prùbìhem dat a hod-
noty E0 a φC stanovené proložením tímto modelem jsou
pomìrnì plauzibilní z fyzikálního hlediska (napø. E0 = 199-203
GPa a φC = 0.646-0.758 pro zirkonièitou keramiku). Jiné mod-
ely, napø. nedávno navržený modifikovaný exponenciální vztah
E/E0 = exp[-Bφ/(1 - φ)] a známý vztah Phani-Niyogiho
E/E0 = (1 - φ/φC)N, lze doporuèit pouze pro speciální úèely (napø.
urèení tzv. vnitøního Youngova modulu [E] u silnì anizomet-
rických pórù) a pro výjimeènì dobrá a pøesná data (u kterých
napø. vztah Phani-Niyogiho poskytuje zároveò [E] a φC).

ADVANCES IN FUSION AND PROCESSING
OF GLASS III. CERAMIC TRANSACTIONS,

VOLUME 141

Varner J.R., Seward III T.P., Schaeffer H.A. (editors)

Published by The American Ceramic Society, 735
Ceramic Place, Westerville, Ohio 43081, USA, 2004;

ISBN: 1-57498-193-5, price 109,- USD (87,- USD
ACerS Members)

The reviewed book, which is the volume No 141 of
Ceramic Transactions series, contains the proceedings
of the 7th international Conference on Advances in
Fusion and Processing of Glass. This conference was
held at July 27-31 in Rochester, NY.

The book is a compilation of 47 papers presented at
the conference and it is divided into 9 chapters accord-
ing to the conference sessions. The first chapter con-
tains 10 papers about advances in the glass melting
process. Four papers in the second chapter are devoted

to the characterization of glass melts and glass melts
properties. Materials for glassmaking and their interac-
tions with glass melts are discussed in the third chapter,
followed by five contributions about advances in glass
forming. The fifth part shows results of research of
polyvalent elements and redox behavior. Effects of
composition and forming on glass structure and proper-
ties are discussed in chapter 6 (5 papers). Surprisingly,
only one paper represents the environmental issues,
emissions and recycling. Six papers are collected in the
chapter about computer modeling and process control.
Last chapter about secondary processing contains two
papers.

Not very common in conference proceedings but
invaluable is the keyword and author index.
Finally, it can be summarised that the reviewed book
gives a good review of the recent research activities in
the fields connected with glass production. The book
can be ordered using on-line catalogue www.ceram-
ics.org

Aleš Helebrant

Book review


