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This work deals with the computation of the stress field generated in an infinitely high glass cylinder while cooling. The 
theory of structural relaxation is used in order to compute the heat capacity, the thermal expansion coefficient, and the 
viscosity. The relaxation of the stress components is solved in the frame of the Maxwell viscoelasticity model. The obtained 
results were verified by the sensitivity analysis and compared with some experimental data.

INTRODUCTION

 Mechanical stress is a frequently discussed physical 
quantity in the glass industry. Articles become fragile 
under the stress influence, their lifetime and safety 
decreases, they crack. The process of stress generation 
is a complex and still opened issue. The methodology of 
measurement enables only to measure the differences of 
the principal stresses.
 This work describes various ways of stress com-
putation in specimens with cylindrical symmetry. The 
computation of the axial stress component is realized by 
an integral expression adopted from a literature as well 
as by using an alternative model. Material parameters 
such as the viscosity, the heat capacity and the thermal 
expansion are taken as functions of the thermodynamic 
and the fictive temperature. The algorithm consists of the 
heat conduction model, model of the structural relaxation 
and the stress relaxation. 

METHOD

The heat conduction model

 A time progression of the temperature field along 
the radius of the glass specimen is needed in order to 
calculate the stress. The computation starts from the heat 
conduction differential equation in the polar coordinate 
system:

(1)

derived from the heat balance of the cylindrical ele-
ment (r+dr) per time dt, where ρ represents the density 
and λ is the heat conductivity. The heat capacity cpf is 
expressed [1, 2] as a function of the thermodynamic 
temperature T, and the fictive temperature Tf:

(2)

where cpg represents the heat capacity of the glass and 
cpm is the heat capacity of the metastable melt. Both 
quantities were measured by DSC (cpg = 1.3 ± 0.13 J/gK, 
cpm = 1.6 ± 0.16 J/gK). Thus, the computation of heat 
conduction must be interconnected with the computation 
of structural relaxation, which gives the time dependence 
of the Tf.
 The heat flow through the bases is equal to zero; 
therefore, in this context we consider the glass specimen 
as infinitely high. The differential Equation (1) can be 
solved in the assumption of the validity of the Robin 
boundary condition of the third kind [3]:

(3)

where a is the heat transfer coefficient. By using the 
finite difference method, the differential Equation (1) is 
transformed into the difference equation in the explicit 
shape. In this shape, we are able to reach the temperature 
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in specific nodal point directly by using the temperature 
that has been obtained in the previous time step. 
 The temperature history is computed in listed 
style in single nodes along the radius of the specimen. 
This history is saved in a matrix and thereafter used in 
following computations.

The structural relaxation model

 The computation of the Tool fictive temperature Tf 
starts at a temperature above the glass transition tem-
perature Tg at the condition of the metastable equilibrium 
(Tf=T). The time continuation of Tf was obtained in the 
Tool-Narayanaswamy-Mazurin (TNMa) model of the 
structural relaxation by solving the Equation [1]:

(4)

where M is the Kohlrausch-Williams-Watt relaxation 
function, t is time and ξ is the non-dimensional reduced 
time. The relaxation function M is expressed by the 
formula:

M (ξ) = exp(– ξb)                  (5)

where the parameter b determines the width distribution 
of the relaxation times 0<b≤1. The non-dimensional 
reduced time ξ is determined:

(6)

where K is an elastic constant and η is the dynamic 
viscosity. For the computation of the reduced time, the 
viscosity according to Mazurin is needed [2]:
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(7)

 These relations (4-7) were used in order to obtain 
the progression of the fictive temperature in each time 
and space step. The single model parameters (Table 1) 

were gained by using the nonlinear regression analysis 
of thermomechanic data of the barium crystal glass [4].

The stress generation model

 The temperature gradient generates the radial, tan- 
gential and axial stress components, which can be 
obtained by the following Equations [5]:

(8)

(9)

(10)

where υ represents the Poisson ratio and E is the Young’s 
modulus. The coefficient of thermal expansion αf depends 
on T and Tf as well as cpf in the Equation (2):

(11)

where ∆α=αm-αg, which is the difference between the 
thermal expansion of metastable melt and glass. The 
temperature field was described by the symmetrical 
polynomial equation of the 4th degree

T(r) = T0 + T2r2 + T4r4                    (12)

which properly describes  the radial course of the 
temperature field. Under this assumption, the integration 
of Equations (8 - 10) leads to more convenient shapes for 
calculations. Cooling of the i-indexed element (Figure 1) 
starts from the zero time step (n=0), where the residual 
stresses equal to zero

(13)

 For the computation of the residual stress in the 
following time steps is necessary to know the value of 
the term

Δσi,n = (σi,n – σi,n-1) ,                      (14)

which is the difference between the stresses obtained 
from the Equations (8-10) in the present and previous 
time step. Then, the final residual stress is expressed by 
the equation

(15)

The discrete stress generation model

 Alternatively, own discrete model was used in order 
to calculate the axial residual stress. The calculation 
is based on the thermal deformation of the discrete 
elements with shape sketched in the (Figure 1).

Table 1.  Material parameters of the barium crystal glass 
(TNMa model) [4].

 Parameter Value

 log(K/dPa) 9.59 ± 0.07

 b 0.548 ± 0.017

 log (ηo/dPa.s) 1.02 ± 0.22

 107 αg/K-1 101.0 ± 4.9

 107 αm/K-1 347.1 ± 2.4
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 For each element indexed i in the time step indexed 
j is:

li,j = li,j-1 (αgΔTi,j + ΔαΔTf,i,j +1) .              (16)
 From the condition of mechanical equilibrium:

  ,                           (17)

we see that the relation of the common equilibrium 
height is:

(18)

where Si represents the base area of the i indexed circular 
ring (Figure 2). 
 Each element is stretched or pressed with respect 
to the equilibrium height  by various magnitudes. These 
deformation differences evoke the tensile or compressive 
stress. There is a viscosity change of axial deformation 
under the stress influence during the time interval Δt:

(19)

 Finally, the residual stress is gained by using the 

Hook’s law:
(20)

RESULTS AND DISCUSSION

Figure 1.  Discrete element shapes of the cylinder, where S is 
the base area and r is the radius of i-indexed element.

Figure 2.  a) space elements; b) element deformation under the shift of the temperature gradient influence; c) resultant deformation 
of the specimen.

 a) b) c)

Figure 3.  a) stress components progressions according to the 
Equation (10); b) experimental data comparison of the axial 
stress component models

a)

b)
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 The progression of the stress components calcula-
ted by using the Equations (8-10) can be seen in the 
Figure 3a). We used the Poisson ratio equal to zero υ = 0 
and the heat transfer coefficient a = 100 W·m-2·K-1. Figu-
re 3b) compares the axial stress component computed 
by both listed ways with experimental data obtained 
by separation of the principal stress components 
according to the publication [6]. There was a glass 
cylinder (R = 35 mm) used for the experiment, which 
was cooled freely on air at the temperature T = 80°C. 
From the figure results, that the integral, as well as the 
discrete model give almost equivalent values. Even 

more important fact is that these models perfectly fit 
the experimental data, whereby a practical utilization 
was proved.
 The time progression of the stress generation in the 
surface node by using the discrete model is shown in 
the Figure 4. At this type of annealing, the generation 
of the temperature stress as well as the structural stress 
progresses parallel so the stress creation has a smooth 
continuance. 
 Sensitivity analyses for the influence of the heat 
transfer coefficient and the number of nodes p were 

a = 50 W/m  K2
a = 150 W/m  K2

Figure 4.  Surface axial stress evolution while cooling on air.

Figure 5.  Arbitration of the algorithm sensitivity for the heat transfer coefficient (Δt = 0.5 s, p = 6).

a)

a)

b)

b)

Table 2.  Algorithm sensitivity for the number of nodes.

                         p = 6                        p = 8                       p = 10
r (mm) 0 3.5 0 3.5 0 3.5
σa (Pa) - discrete m. 2.90×107 -4.84×107 3.26×107 -4.66×107 3.39×107 -4.56×107

σa (Pa) - Equation (10) 3.49×107 -4.64×107 3.52×107 -4.48×107 3.58×107 -4.36×107

Mi=p,j=1                          6.5121                          3.3225                        2.0099
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performed on both of these models. As the value of the 
coefficient a increases, the magnitude of residual stress 
does too (Figure 5).
 The sensitivity of the algorithm for the number 
of nodes along the radius was performed under the 
conditions a = 200 W.m-2.K-1, Δt = 0,2 s and p = 6, 8, 10. 
The values of the axial components of residual stress for 
center and surface of the cylinder are listed in the Table 
2. There is no need to perform the time step sensitivity 
analysis because the time and space step are linked 
together by the Fourier dimensionless criteria:

(21)

where Δr is the length of the space step. The numerical 
stability of the solution is safeguarded by the fulfillment 
of the condition M > 2 for each pair of indexes i and j [3]. 
 It can be seen that the sensitivity of both of the 
models is sufficiently low. Results were reached with 
the aid of our own software made by the programming 
language MATLAB®.

CONCLUSION

 The integral model adopted from literature, as 
well as own discrete model were developed for the 
calculation of the axial stress component. Both models 
were successfully verified by comparing with the 
experimental data. Sufficiently low sensitivity with 

respect to the chosen parameters was demonstrated. The 
potential utilization of gained results is in the annealing 
process optimization. In the next work, the discrete 
model will be expanded into the new shape with all the 
stress components and implemented Poisson ratio. 
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