
Original papers

Ceramics – Silikáty  56 (4) 367-373 (2012)	 367

THE SEMIEMPIRICAL MODEL OF THE MULTICOMPONENT
BUBBLE BEHAVIOUR IN GLASS MELTS

#LUBOMÍR NĚMEC, MIROSLAVA VERNEROVÁ, PETRA CINCIBUSOVÁ, 
MARCELA JEBAVÁ, JAROSLAV KLOUŽEK

Laboratory of Inorganic Materials, Joint Workplace of the Institute of Chemical Technology Prague,
Technická 5, 166 28 Prague 6, and the Institute of Rock Structure and Mechanics ASCR, v.v.i.,

V Holešovičkách 41, 182 09 Prague 8, Czech Republic

#E-mail: Lubomir.Nemec@vscht.cz

Submitted August 20, 2012; accepted November 15, 2012

Keywords: Glass fining, Semi-empirical model, Experimental data, Bubble growth, Bubble dissolution, Bubble composition

A semi-empirical model of the bubble growth and dissolution in glasses with a fining agent has been derived. This model 
applies the experimental data from bubble observation at melting and fining temperatures. The experimental data needed for 
the model involved the temperature dependences of the average growth rate of the bubble radius and the average concentration 
of the fining gas in the bubbles. Both sets of values were measured in the laboratory in the glass of the float type and applied 
in the model. The measurements of the solubilities and diffusion coefficients of the gases present in the glass – needed for 
the analytical model of multicomponent bubbles – were thus avoided. The course of the partial bubble absorption with the 
temperature decreasing was simulated by means of two factors modifying the experimental values of the bubble growth rates 
at constant temperature. The temperature dependence of the resulting bubble growth rate qualitatively corresponded to the 
experimental observations in the soda-lime-silica glass, but a more detailed experimental and comparative study has yet to 
be performed. Such a study is being prepared.

Introduction

	 A reliable model of multicomponent bubble beha- 
viour in glass melts, particularly during the glass 
melting process, is a crucial prerequisite for testing new 
fining procedures in industrial glass melting spaces, 
for the technological studies of glass fining and for 
the development of new glass melting and glass fining 
facilities. The need for the fining model arises especially 
in connection with the recent developments of special 
glasses characterised by high fining temperatures. Several 
physico-chemical models which describe the behaviour 
of multicomponent bubbles during glass melting are 
based on the fact that the fining process is controlled by 
mass transfer with the participation of several chemical 
reactions [1-8]. The differential equations expressing 
the diffusion of the individual gases present provide 
a picture of the bubble size, composition and position 
in the melt during the fining process. Whereas the 
equations describe the fining behaviour of individual 
bubbles with sufficient reliability despite some accepted 
simplifications, the data necessary for the models, 
including the properties of the relevant gases in the melt, 
are not available or they are measured with a limited 
accuracy. The low level of accuracy affects especially 

the measured solubilities and diffusion coefficients of 
hardly soluble gases (carbon dioxide, nitrogen, argon). 
The data of low quality may however substantially 
distort the bubble properties under the given conditions 
and the results of mathematical modelling may even 
qualitatively differ from the experimentally observed 
bubble behaviour under the given conditions. Therefore, 
especially the bubble characteristics at medium and low 
temperatures – important for the modelling of glass 
defects – are not sufficiently credible and prevent the 
identification and characterisation of the defect-bubble 
sources by the mathematical modelling.
	 Several data describing bubble behaviour may 
be obtained experimentally by bubble observation at 
different melting and fining temperatures and temperature 
regression [9-12]. It is nevertheless difficult to derive a 
more general model from these observations without 
considering the general features of the multicomponent 
bubble behaviour and without a targeted series of 
bubble observations. This study aims at deriving a 
semiempirical model describing the bubble size and 
approximate composition in the glass by using the 
relevant bubble observation data which were obtained in 
glasses containing a fining agent. The measurement of 
the necessary experimental data is also involved.
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Theoretical 

The bubble behaviour at constant 
and increasing temperatures

	 The sum of the internal partial pressures of present 
gases in molten industrial glasses almost always exceeds 
the total pressure inside the bubbles in the entire 
temperature interval of glass melting [13]:

(1)

where pimelt (Pa) is the internal partial pressure of the i-th 
gas in the melt and ptot (Pa) is the total pressure inside of 
the bubble.
	 Consequently, all the bubbles grow in the glass 
melt even at constant temperature and the value of the 
bubble growth rate increases with the temperature. The 
results of the mathematical modelling of bubble fining 
show that the character of the dependence between the 
bubble size and time is almost linear in the stationary 
state (as soon as the bubble attains the almost constant 
- stationary composition and the bubble growth rate 
depends only slightly on the bubble size). The fining 
behaviour of bubbles in the glass melt can thus be 
characterised by an average value of the bubble growth 
rate at the given temperature, (d͞a/dτ), where a (m) is the 
bubble radius. The value of the bubble growth rate at 
the given temperature may be experimentally measured 
by the method of HTO (High-Temperature Observation) 
[9-10], and its value, (da/dτ)exp = (Δa/Δτ)exp, is received by 
observing the time history of a bubble in the melt.
	 When the temperature grows, the gas diffusion 
rate in the melt grows as well owing to the increasing 
values of diffusion coefficients and the decreasing, both 
physical and chemical, solubilities of the gases present 
in the melt. In addition, the concentration of the fining 
gas in the bubble increases, because the intensity of 
the fining agent decomposition grows steeply with the 
temperature. This leads to further bubble growth. Both the 
mathematical and semiempirical (experimental) models 
take the two processes into account as simultaneous. 
The main contributions to the total bubble growth rate 
are thus the bubble growth rate at a constant temperature 
and the bubble growth rate owing to the increase of the 
fining gas concentration in the bubble. The total growth 
rate of the bubble radius can be derived from the Gay-
Lussac equation valid for a bubble, when ideal behaviour 
of gases is assumed:

(2)

where T (K) is the temperature, R (J/(K∙mol)) is the 
universal gas constant, and n (mol) is the total amount of 
all gases present in the bubble which is a function of both 
time and temperature (temperature regime):

n = n[τ, T(τ)]                               (3)

	 After a substitution and derivative of equations 
(2-3) at a varying bubble volume and temperature:

(4)

where the first term on the right side represents the 
diffusion of all the gases at constant temperature, the 
second term is the contribution to the bubble growth 
owing to the increasing temperature and the third term 
expresses the contribution to the bubble growth owing 
to the thermal expansion of the gases. The value of n is 
given by the sum of moles of the fining gas nF and other 
gases nO present in the bubble:

(5)

	 The total amount of all gases present in the bubble 
can also be expressed by the ratio of the total volume of 
the bubble and the molar volume of the ideal gas, which 
is linearly temperature dependent (see the right side of 
the equation (5)). 
	 In fact, the temperature dependence of the diffusion 
of the fining gas is much more significant than the 
temperature dependence valid for the other gases (owing 
to the steep temperature dependence of the solubility of 
the fining gas in the melt). Consequently, the transport of 
the gases at varying temperature – as expressed by the 
second term on the right side of equation (4) – can be 
represented only by the fining gas:

(6)

	 So, the expression ∂n/∂T in the second term on the 
right side in equation (4) is replaced by ∂nF/∂T from 
equation (6).
	 The concentration of the fining gas in the volume 
percentage is expressed by:

(7)

	 By a derivation of equation (7) and by taking into 
account equation (6):

(8)

	 By applying equation (5) for n, the equation (8) then 
acquires the form:

(9)

	 After an insertion of equation (9) into (4) and a 
rearrangement, we obtain the relation describing the time 
development of the bubble radius:

(10)

	 The first term on the right side of equation (10) 
represents the experimentally measurable diffusion 
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of all the gases at constant temperature, (da/dτ)exp, and 
equation (11) then acquires the final form:

(11)

	 The second term on the right side expresses the 
diffusion of the fining gas into the bubble to attain the 
stationary bubble composition, and the third one the 
thermal expansion of the present gases.
	 In order to obtain the temperature dependence of 
the fining gas concentration, dcF/dT, bubble absorption 
is measured by the HTO method under temperature 
drop from the fining temperatures to temperatures 
characterised by an almost zero concentration of the 
fining gas in the bubble. The concentration of the 
fining gas in the bubble cF at the given temperature is 
determined from the difference in bubble volumes. The 
diffusion of other gases is neglected. 

The bubble behaviour
at decreasing temperature

	 When temperature decreases, the counter-diffusion 
of gases between the bubble and melt and the dramatic 
changes of the bubble composition occur in the interval 
of medium temperatures. The fining gas starts to diffuse 
outside from the bubble, so it does not longer take part 
in the bubble growth with the exception of the very low 
rates of temperature decrease. The important value is the 
temperature TS (saturation temperature of the fining gas) 
at which the internal partial pressure of the fining gas 
in the melt reaches the value of the total pressure in the 
melt: pFmelt = ptot                           (12)

	 Now, if T > TS, the bubble rises in the glass melt 
supersaturated by the fining gas and mostly steadily 
grows even at decreasing temperature. Equation (11) is 
then valid, but the terms dcF

dT
        a
3(100 - cF)

dT
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273
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aR  
are negative at dT/dτ < 0.

	 If T < TS, the counter-diffusion of gases between 
the bubble and melt takes place, because the other gases 
diffuse permanently into the bubble; nevertheless, the 
fining gas is absorbed from the bubble into the melt. 
The fining gas is a rapidly diffusing gas with a steep 
temperature dependence of its chemical solubility in the 
melt. Consequently, its concentration in the bubble at the 
given temperature always approaches the equilibrium 
one and the other gases should diffuse into the bubble 
owing to their relatively high concentrations in the melt. 
Under these conditions, the composition of gases in the 
bubble at the given temperature remains almost constant 
(the stationary composition) even when the bubble 
grows or dissolves. If temperature decreases over the 
given temperature region, the concentration of the fining 
gas in the bubble rapidly decreases to its equilibrium 
value and the fraction of the other gases in the bubble 
should always correspond to the stationary composition 
of the bubble at the given temperature. The diffusion of 
the other gases into the bubble is then described by the 
factor:

(13)

which multiplies the experimental value of the bubble 
growth rate at constant temperature, (da/dτ)exp, in the 
equation (11).
	 The complete equation for the bubble radius deve-
lopment in time valid in the interval T < TS is then:

(14a)

	 The validity of equation (14a) is based on the 
assumption that the fining gas is characterised by a ra- 
pid diffusion; consequently, its concentration in the 
bubble at any time-temperature regime has to be equi-
valent to the stationary concentration cF. The validity 
of the assumption is fulfilled if the degree of bubble-
volume absorption during glass cooling over the 
defined temperature interval is independent of the time-
temperature regime, dT/dτ. However, at very high values 
of the temperature decrease, |dT/dτ|, the concentration 
of the fining gas in the bubble will be higher than the 
stationary one cF.
	 If the temperature decrease is very slow, a part of 
the fining gas will diffuse into the bubbles even during 
the temperature decrease from TS, because the necessary 
decrease of the concentration of the fining gas in the 
bubble is compensated by the dilution effect of the other 
gases diffusing into the bubble. The second multiplying 
factor of the value of the experimental bubble growth 
rate (da/dτ)exp is therefore introduced into equation (14a) 
at the very low values of the temperature decrease. In 
the very narrow interval of the rates of the temperature 
decrease, close to 0, the fraction of the applicable value of 

Figure 1.  The schematic picture of the values of the product 
of f (cF)·g(dT/dτ) as a function of cF (T) and |dT/dτ| under a 
temperature decrease from TS, T < TS.

0

1
1

100
cF(vol.%)

cF(TS)

f(
c F
)·
g(
dT
/d

τ)

|(dT/dτ)c|

|dT
/dτ
|

∞

|dT
/dτ

| (K
/s)

=         exp +                                    +
dcF

dT
a

3(100 – cF)
da
dτ

da
dτ

dT
dτ

dT
dτ(     ) aR

6.72×10-2 (T/273) ptot

f (cF) =
100 – cF

100

=         exp                 +                                    +
dcF

dT
a

3(100 – cF)
da
dτ

da
dτ

dT
dτ

dT
dτ(     ) aR

6.72×10-2 (T/273) ptot

100 – cF

100

=         exp                 +                                    +
dcF

dT
a

3(100 – cF)
da
dτ

da
dτ

dT
dτ

dT
dτ(     ) aR

6.72×10-2 (T/273) ptot

100 – cF

100



Němec L., Vernerová M., Cincibusová P., Jebavá M., Kloužek J.

370	 Ceramics – Silikáty  56 (4) 367-373 (2012)

(da/dτ)exp should then grow from (da/dτ)exp (100 – cF)/100 
to (da/dτ)exp. An empirical factor g(dT/dτ) is proposed, 
multiplying the term with (da/dτ)exp in equation (14a) 
along with f (cF) to describe the narrow range of the rates 
of the temperature decrease when the bubble behaviour 
changes from the dissolution to the growth:

(15)

where |(dT/dτ)C| is a critical rate of the temperature 
decrease. The factor g(dT/dτ) is applicable in the 
interval 〈0; |(dT/dτ)C|〉 of the temperature decrease, 
and provides g(dT/dτ) = 1 if |dT/dτ| = |(dT/dτ)C| 
and g(dT/dτ) = 100/(100 – cF) if |dT/dτ| = 0. If |dT/dτ| 
> |(dT/dτ)C|, equation (14a) is valid without considering 
g(dT/dτ), see Figure 1. After a substitution of equation 
(15) into (14a) and a rearrangement, the equation for 
the bubble radius development in time in the interval  
|dT/dτ| ϵ 〈0; |(dT/dτ)C|〉 has the form:

(14b)

	 The value of |(dT/dτ)C| can be obtained at the tem-
perature TS from the equilibrium between the rate of 
diffusion of the other gases into the bubble and the rate 
of diffusion of the fining gas out of the bubble. In order 
to calculate |(dT/dτ)C|, equation (14b) should be used at 
da/dτ = 0 and the last term on the right side of equation 
(14b) is neglected. After a rearrangement, we have:

(16)

where (da/dτ)expS , aS and cFS are the experimental 
bubble growth rate, the bubble radius and the volume 
concentration of the fining gas in the bubble at TS. 
Equation (16) is applicable only when the temperature 
decrease starts at temperatures T ≥ TS. If the temperature 
decrease starts at a lower temperature than TS, the value 
of |(dT/dτ)C| cannot be obtained, because the value of aS 
is not known (the relevant bubble history from TS has 
not occurred). That is why the experimental estimation 
of the critical rate of the temperature decrease,  
|(dT/dτ)C|, should be applied, which is valid for most 
frequent bubble sizes at low values of |(dT/dτ)| (it should 
be obtained experimentally). For |dT/dτ| < |(dT/dτ)C|, the 
equality is then simply put as g(dT/dτ) = 100/(100 – cF), 
i.e. the equation (11) is valid. 
	 The value of |(dT/dτ)C| is experimentally estimated 
from the observation of bubble behaviour at very slow 
temperature decreases. The value of |(dT/dτ)C| is approxi-
mately characterised by the rate of temperature decrease, 
at which the majority of the observed bubbles do not 
shrink more, i.e. the bubble size remains constant. The 
experiments with sodium sulphate as a fining agent 

have indicated that the value of |(dT/dτ)C| should be 
lower than 1 K/min. Consequently, the approximation 
of the function g(dT/dτ) by its marginal value valid for 
dT/dτ  =  0 will not substantially influence the entire 
picture of bubble behaviour.
	 The applicable part of the experimental term  
(da/dτ)exp in the temperature interval T < TS is thus 
dependent on the multiplication factor f(cF)·g(dT/dτ). 
For dT/dτ → 0, the product rapidly approaches 1 and the 
entire value of (da/dτ)exp is applicable. When dT/dτ → ∞, 
the fining gas remains in the bubble and the product 
retains its initial value (e.g. at TS, the value of the product 
is (100-cFS)/100). In the wide range of the currently 
occurring values of dT/dτ  – where the concentration of 
the fining gas in the bubble is almost in equilibrium with 
the melt – the product has the value of (100 – cF)/100. 
The schematic dependence of the multiplication factor 
f (cF)·g(dT/dτ) on cF and dT/dτ is presented in Figure 1.
	 The addition of a fining agent releasing a gas che- 
mically insoluble in the glass melt or a gas with its 
chemical solubility being almost temperature inde-
pendent requires the application of equation (11) at 
increasing temperature and the application of equation 
expressing only the thermal contraction of the gases in 
the bubble during the glass cooling:

	 (11b)

	 The fining by the chemically insoluble gas occurs 
in the case of the sulphate reduction fining. The 
physically soluble sulphur dioxide is released by the 
direct reduction of the sulphate during the earlier melting 
stages and by the reaction of the remaining sulphate and 
produced sulphide during the later fining period [11-12]. 
The fining only by a physically soluble gas or by a gas 
showing the chemical solubility almost independent of 
temperature is advantageous at the regimes of fluctuating 
temperature. No chemical absorption of the bubble and, 
consequently, no fining retardation occurs then at the 
regimes of decreasing temperature. 

Experimental

The application of the model for the float 
glass fined by the sodium sulphate

	 The float glass was applied with 0.62 wt. % of SO3 
in the glass, added to the glass batch. The values of 
the growth rate of the bubble diameter were measured 
between 1123-1500°C using the high temperature ob-
servation method [10, 12]. The values of the growth 
rates of bubble diameters obtained by the observation of 
the individual bubbles, their average values and the stan-
dard deviation of measurements are shown in Table 1. 
On average, 10 bubbles were followed at each tempe-
rature. The scattering of the results at lower temperatures 
is caused by the glass inhomogeneity. The experimental 
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dependence between (d͞d/dτ)exp has been expressed by
the exponential relation:

(17)

where T is the temperature in K; the equation (17) with 
the experimental points are presented in Figure 2.

	 The concentrations of the fining gas in the bubbles 
were measured at temperatures of 1380, 1400, 1420, 
1450, 1480, 1500 and 1520°C from the observed bubble 
contraction after a temperature drop to 1280°C [12]. On 
average, 5 bubbles were observed at each temperature. 
The values of the concentrations of the fining gas in the 
individual bubbles observed, the average concentrations 
and the standard deviation of the measurements are 
presented in Table 2 and plotted in Figure 3.
	 The value of the saturation temperature tS read
from Figure 3 was 1450°C (TS = 1723 K). The amounts 
of both the fining and the other gases in the bubble 
grow approximately exponentially. Since the relation 
cF = 100nF/(nF+nO) expresses the percentage concentra-

tion of the fining gas in the bubble, the values of both 
nF and nO should not express the actual number of mo-
les of both gases in the bubble. Two significant points 
along the experimental dependence cF (t) were elected 
for fitting the dependence to the experimental data: 
cF = 27.6 vol. % of the fining gas at 1400°C and 
cF = 97.1 vol. % of the fining gas at 1450°C. The values 
of nF and nO are then: 

nF = 3.52×10-7exp[8.36×10-2(t – 1200)]         (18a)

nO = exp[0.01(t – 1200)]+10                  (18b)
and the cF(t) dependence has the form:

(19)

	 The equation (19) fits well the experimental va-
lues of cF at temperatures higher than 1400°C. The 
deviation from the experimental values is obvious at 
lower temperatures, where a further decrease of cF

with the temperature should be expected, but the mea-
surement showed only a small decrease of the fining 
gas concentration. The problem most probably consists 

Table 1.  The values of the experimentally measured growth 
rates of bubble diameter as a function of the temperature.

	 t	 T	 dd/dτ	 standard deviation
	(°C)	 (K)	 (m/s)	 (m/s)

	1123	 1396	 9.42×10-9	 3.58×10-9

	1223	 1496	 5.70×10-8	 2.97×10-8

	1273	 1546	 5.31×10-8	 4.09×10-8

	1323	 1596	 5.82×10-8	 1.65×10-8

	1373	 1646	 4.44×10-7	 1.72×10-7

	1410	 1683	 1.84×10-6	 4.94×10-7

	1450	 1723	 6.90×10-6	 8.08×10-7

	1500	 1773	 1.17×10-5	 1.69×10-6

Table 2.  The concentrations of the fining gas in the bubbles 
as a function of the temperature.

	 t	 T	 cFavg 	 standard
	(°C)	 (K)	 (vol.%)	 deviation

	1380	 1653	 23.67	 3.14
	1400	 1673	 27.64	 3.68
	1420	 1693	 56.83	 5.50
	1450	 1723	 97.07	 0.43
	1480	 1753	 93.98	 1.48
	1500	 1773	 95.95	 0.92
	1520	 1793	 93.68	 2.51
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Figure 2.  The values of the experimentally measured average 
rates of the growth of bubble diameter as a function of the 
temperature (square points) and the fitted empirical function.
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in the low accuracy of the experimental measurements 
below 1400°C. The value of dcF/dt is then given by:

(20)

Discussion

	 The presented model clearly works at growing 
temperature when the total bubble growth rate is com-
posed of two increments: the bubble growth rate at 
constant temperature caused by the diffusion of all the 
gases present into the bubble, which is expressed by the 
value of the term (da/dτ)exp, and the bubble growth rate 
caused by the growth of the fining gas concentration in 
the bubble, expressed by equation (9). Figure 4 presents 
the bubble growth rates as a function of the temperature 
for different values of the product of a·dt/dτ. The bub-
ble growth rates grow with both temperature and the 
product of a·dt/dτ. The values of the bubble radii a and 
the temperature increases dt/dτ used for the products 
are given in the Table 3. The equation confirms the 
experimentally observed rapid increase of the fining rate 
with the temperature. The expected progressive growth 
of bubble sizes at the regime of growing temperature will 
be presented in the next work. 

	 The behaviour of the bubbles at decreasing tem-
perature is a more complicated case, as the ‘other’ gases 
diffuse permanently into the bubbles while the fining 
gas is absorbed from the bubbles into the melt. The 
development of the total rate of the bubble radius change 
with the temperature shows then both the positive and 
negative trend with the minimum. Such a development 
for several values of the product of a·dt/dτ is plotted in 
Figure 5.
	 Under the condition of a steady decrease of the 
temperature from the high fining temperatures, most 
bubbles steadily grow at temperatures T > TS but their 
growth rate decreases because of the growing negative 

value of the second term on the right side of equation 
(11). The large bubbles at high values of dT/dτ dissolve 
already at T > TS. As soon as the temperature attains a value 
of around the saturation temperature tS (here 1450°C), 
the glass supersaturation by the fining gas vanishes and 
the concentration of the fining gas in the bubble, cF, 
drops abruptly. This fact is demonstrated by the sudden 
shift of the total rate of the bubble radius change to the 
negative values – most bubbles will dissolve. Equation 
(14a) with the term (100 − cF)/100 will be valid below 
TS. A further temperature decrease below TS leads to an 
increase of the fraction of the ‘other’ gases diffusing 
permanently into bubbles and subsequently to a decrease 
of the bubble dissolution rate. In the relatively broad 
temperature interval around 1400°C, the bubble begins 
to grow slowly again owing to the prevailing diffusion 
of the ‘other’ gases into the bubble. The specific course 
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Figure 4.  The dependence of the total growth rate of the bubble 
radius on the temperature at growing temperature and at different 
values of a·dt/dτ: ■1 - a·dt/dτ = 1.04×10-5, ▲3 - a·dt/dτ =
= 4.17×10-5, ●5 - a·dt/dτ = 1.67×10-4 (m·°C/s).

Figure 5.  The dependence of the total rates of the bubble ra-
dius changes on the temperature at decreasing temperature 
and at different values of: ■1 - a·dt/dτ = −1.04×10-5, ○2 - a·dt/dτ =
= −2.08×10-5, ▲3 - a·dt/dτ = −4.17×10-5, ◊4 -  a·dt/dτ = −8.35×10-5,
●5 - a·dt/dτ = −1.67×10-4, ∇6 - a·dt/dτ = −3.33×10-4 (m·°C/s).
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Table 3.  The values of the bubble radii a, the temperature 
increases dt/dτ and their products a·dt/dτ. At decreasing tem-
perature the values of products will have the negative sign 
(in Figure 5)

	No.	 a	 dt/dτ	 dt/dτ	 a·dt/dτ
		  (m)	 (°C/min)	 (°C/s)	 (m·°C/s)

	 1	 1.25×10-4	 5	 8.33×10-2	 1.04×10-5

	 2	 2.5×10-4	 5	 8.33×10-2	 2.08×10-5

	 3	 2.5×10-4	 10	 1.67×10-1	 4.17×10-5

	 4	 5.0×10-4	 10	 1.67×10-1	 8.35×10-5

	 5	 5.0×10-4	 20	 3.33×10-1	 1.67×10-4

	 6	 1.0×10-3	 20	 3.33×10-1	 3.33×10-4
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of the described dependence is dependent on the bubble 
size and the rate of temperature decrease; the larger 
bubbles at a quickly decreasing temperature dissolve 
in a broader temperature interval and with a higher 
rate than the small ones. The high bubble dissolution 
rates around the temperature 1450°C correspond to the 
experimental observations and will be discussed in the 
following work. According to equation (14a), a bubble 
below TS cannot be dissolved completely, because the 
term (da/dτ)exp is permanently positive and the abso-
lute value of the negative term rapidly decreases at 
lower temperatures. This fact is in agreement with 
the experimental observations, as well. The complex 
behaviour of bubbles at temperatures around and below 
TS becomes evident during fining under industrial mel-
ting conditions characterised by an oscillating tempe-
rature along the bubble pathways.
	 If the rate of the temperature decrease is very low, 
the fining gas begins to diffuse into the bubbles despite 
the fact that the concentration of the fining gas in the 
bubble still decreases (the decrease is compensated by 
the dilution effect of the ‘other’ gases diffusing into 
the bubble). This behaviour is particularly apparent at 
high concentrations of the fining gas in the bubble, i.e. 
at temperatures slightly below TS. The empirical factor 
g(dT/dτ) has therefore been proposed to bridge the value 
of the bubble growth rate from (da/dτ)exp (100 – cF)/100
to (da/dτ)exp at low values of the temperature decrease
(dT/dτ) (see eq. 15). In order to ascertain the significance 
of the factor g(dT/dτ), the values of the critical tem-
perature decrease |(dT/dτ)C| were calculated for the 
different initial bubble radii at TS = 1723 K (tS = 1450°C). 
The dependence between |(dT/dτ)C| and aS is plotted in 
Figure 6. The results show that the values of |(dT/dτ)C| 
increase with the decreasing value of the bubble radius 
at TS and are very low for bubbles of the current sizes 
around 1mm. The factor g(dT/dτ) will therefore be 
applied only to a minor extent. 

Conclusion

	 The study has proposed equations able to describe 
the bubble behaviour in glass melts under the conditions 
of time-temperature regimes. The derived equations result 
from the experimental examination of bubble growth 
at constant temperature and from the determination 
of the concentration of the fining gas in the bubbles 
as a function of the temperature. Thus, the long-term 
measurements of the data characterising the equilibrium 
and kinetics of the gases are avoided and the model of 
the bubbles in the relevant glass may be easily realised 
for application in industrial facilities. Two factors have 
been proposed to modify the experimental values of 
the bubble growth rates at decreasing temperature and 
to simulate the partial bubble dissolution in the melt. It 
seems, however, that only the first one, f(cF), taking into 
account the instant concentration of the ‘other’ gases in 
the bubble, will be relevant for the practical modelling 
applications. The up-to-date experimental results are 
in qualitative agreement with the experimental bubble 
observations. An experimental study of the bubble 
behaviour at different time-temperature regimes to verify 
the model in detail is in progress.
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Figure 6.  The values of the critical temperature decrease 
|(dT/dτ)C| as a function of the bubble radius aS at the satura-
tion temperature TS (TS = 1723 K).
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