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In this first part of a two-paper set on the elastic properties of mullite and mullite ceramics the current literature is reviewed 
and, based on the available monocrystal data, a mutually consistent average set of elastic constants for polycrystalline 
mullite materials at room temperature is calculated and optimized via minimization of the total average relative root mean 
square (RMS) deviation. Based on the results of this paper, the recommended values of adiabatic elastic constants are 
224.9 GPa for the Young’s modulus, 87.8 GPa for the shear modulus, 170.9 GPa for the bulk modulus and 0.281 for the 
Poisson ratio. The RMS deviation of this set is lower than for any other set, and thus these values exhibit a high degree of 
mutual consistency with respect to the elasticity standard relations. Micromechanical upper bounds and model relations are 
summarized for describing the porosity dependence of elastic moduli, and a simple relation is used to estimate the difference 
between adiabatic and isothermal elastic constants. The results show that this difference increases slightly with temperature, 
but is not larger than 4 % even at 1500°C. In particular, for the Young’s modulus the difference remains below 0.5 %. That 
means, the difference between adiabatic and isothermal Young’s moduli will usually be unmeasurably small and negligible 
in practice.

INTRODUCTION

	 Mullite is the most important crystalline phase 
in many silicate ceramics (e.g. porcelain, stoneware, 
earthenware), refractories (e.g. fireclay/chamotte, silli- 
manite bricks) and ceramic composites [1, 2]. Therefore 
its elastic properties are of utmost practical importance 
throughout ceramic science and engineering. In parti-
cular, for all predictive calculations concerning the 
effective elastic constants (or moduli) of multiphase 
composites the elastic constants (moduli) of mullite as 
a single phase must be reliably known. Such knowledge 
is generally not available from the textbook literature, 
because porosity effects and compositional variations 
are usually not taken into account with due care (grain 
size effects can be assumed to be negligible, unless 
nanocrystalline materials are considered [3]). In fact, 
reliable values for the elastic constants of dense (i.e. 
pore-free) isotropic polycrystalline materials can only be 
obtained by calculating the Voigt-Reuss-Hill averages of 
the elastic moduli from the components of the elasticity 
tensor for mullite single crystals, more precisely from 

the elements of the stiffness matrix and its inverse, the 
compliance matrix. Today these values are available in 
the literature. In particular, the groups of Kriven and 
Schneider have performed extensive and very detailed 
experimental studies of the single-crystal elastic pro-
perties of mullite, not only for room temperature, but up 
to temperatures of 1400°C, using resonant ultrasound 
techniques and Brillouin spectroscopy [4-8]. However, 
although the data previously scattered in the literature 
have been collected in the monograph by Schneider and 
Komarneni [2] and in a more recent review article [9], it 
seems that a final comparison of the corresponding Voigt-
Reuss-Hill averages of the effective Young’s moduli for 
all data sets has not been performed and published so far. 
For example, on p. 143 of the mentioned monograph, 
Schneider presents a comparative table of single-crystal 
stiffness and compliance data, but only the Reuss values 
of the bulk moduli are calculated from these directly, 
and the Young moduli, shear moduli and bulk moduli 
listed elsewhere in the same book (p. 313) by Okada and 
Schneider are evidently based only on one of these data 
sets [7]. 
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	 In this contribution we summarize the current 
knowledge on the elastic properties of mullite and mul-
lite ceramics in a way that leads to an updated final set of 
room temperature values for the elastic constants that is 
mutually consistent with respect to the “elasticity stan-
dard relations“ (i.e. the mutual interrelations between 
the elastic constants of isotropic materials [10]) and can 
thus be recommended as a reliable input information 
for all subsequent calculations of multiphase ceramics 
and composites, e.g via the Hashin-Shtrikman bounds 
[11]. Although the optimized data set recommended by 
Hildmann et al. [7] is very consistent indeed, leading 
to total average relative root square deviations (defined 
below) of only 1.2 × 10-4 for the elastic constants
(for comparison: the other three data sets and Ledbetter’s 
data set before optimization exhibit relative root square 
deviations between 4.7 and 8.5 × 10-3), the present paper 
shows that when all available single-crystal data are 
taken into account, an average data set can be found that 
is even more consistent and precise than Hildmann’s 
set, resulting in root mean square deviations as low as 
1.7 × 10-5 for the elasticity constants at room temperature.
	 With respect to the importance of mullite in refrac-
tories, the temperature dependence of the elastic con-stants 
is briefly mentioned as well. Since it is common practice 
in the field of refractories to test mechanical properties 
by static or very slow (quasistatic) tests, it is important 
to dispose of a realistic estimate of the difference bet-
ween isothermal and adiabatic elastic constants. Such 
an estimate can be given (for any temperature) when – 
in addition to the bulk modulus – the specific heat and 
the (true) coefficient of thermal expansion is known for 
the temperature in question. Therefore also this point is 
addressed in the present paper. In the second part of this 
two-paper set, experimental results will be presented 
concerning the Young’s moduli of mullite and mullite-
containing ceramics, measured via the impulse excitation 
technique, including their  temperature dependence, and 
compared to the theoretical predictions.  

Effective elastic constants of polycrystalline 
materials from monocrystal data

	 The behavior of linearly elastic anisotropic materials 
is described by Hooke’s law in the form 

Tij = Cijkl Ekl                             (1)

where Tij is the Cauchy stress tensor, Cijkl the stiffness 
tensor (elasticity tensor) and Ekl the small strain tensor 
[10]. Alternatively, the constitutive equation of linearly 
elastic materials can be written in the form

Eij = Sijkl Tkl                              (2)

(inverse Hooke’s law), where Sijkl is the compliance 
tensor, i.e. the inverse of the stiffness tensor. 
	 Due to the symmetry of the stress and strain ten-
sors, the number of components of the stiffness and 

compliance tensors is reduced from a total of 81 to 36 
independent ones [10]. Thus, it is possible to represent 
these fourth-order tensors alternatively in the form of 
(6 × 6) matrices, and to express Hooke‘s law and inverse 
Hooke’s law in matrix notation (engineering notation) as

σi = Cij εj,                                 (3)

εi = Sij σj,                                  (4)
respectively, where the abstract 6-dimensional vectors σi 
and εi now represent the 6 independent components of 
the stress and strain tensors and the indices are renamed 
according to the engineering convention, see e.g. [10]. 
	 In the most general case of anisotropy (triclinic mo-
nocrystals) the (6 × 6) stiffness or compliance matrices 
or, alternatively, the fourth-order stiffness or compliance 
tensors, have 36 elastic constants or coefficients, respec-
tively, but only 21 of these are independent, since the 
stiffness and compliance matrices are additionally sym-
metric with respect to their diagonals (so-called Green 
elasticity or hyperelasticity), cf. [10]. For materials of 
higher symmetry (monocrystals, polycrystalline or mul-
tiphase materials) the number of independent elastic 
constants is further reduced, so that for orthorhombic 
monocrystals there are only 9 independent elastic con-
stants. The stiffness matrix in the latter case is 

.       (5)

	 In the case of isotropic materials (i.e. the case 
of highest symmetry) the stiffness matrix is greatly 
simplified, because the following relations hold between 
the matrix elements: 

		  C11 = C22 = C33, C12 = C23 = C31,
		  C44 = C55 = C66 = ½(C11 – C12)

                       (6)

	 That means, for isotropic materials only 2 of these 
elastic constants are independent and, using the defi-
nitions C12 ≡ λ and C44 ≡ μ, the stiffness matrix of iso-
tropic materials can be written as [10]

.       (7)

	 Note that all stiffness matrix elements (elastic con- 
stants), including λ and μ (the so-called Lamé constants) 
have units [GPa] and are therefore elastic moduli (in 
contrast to the dimensionless Poisson ratio, which is 
an elastic constant, but not an elastic modulus [10]). 

( )



























=

66

55

44

333231

232221

131211

00000
00000
00000
000
000
000

C
C

C
CCC
CCC
CCC

C icorthorhomb

( )



























+
+

+

=

µ
µ

µ
µλλλ

λµλλ
λλµλ

00000
00000
00000
0002
0002
0002

isotropicC



Elastic properties of mullite and mullite-containing ceramics – Part 1: Theoretical aspects and rewiew of monocrystal data

Ceramics – Silikáty  57 (4) 265-274 (2013)	 267

Of course, the two Lamé constants occurring in the 
stiffness matrix (7) are only one possible choice of 
elastic constants for isotropic materials. Depending on 
the problem or application in question, other elastic 
constants may be more convenient, e.g. the tensile 
modulus (Young’s modulus) E (units [GPa]), the shear 
modulus G ([GPa]), the bulk modulus K ([GPa]) and the 
Poisson ratio ν (dimensionless). Only two (independent) 
elastic constants are sufficient to calculate all other 
constants and thus to describe the elastic behavior of 
isotropic materials completely. For easy reference we list 
the interrelations between the elastic constants (denoted 
as “elasticity standard relations” in the sequel) needed in 
this paper:

,             (8)

,             (9)

,       (10)

.            (11)

	 Polycrystalline materials consisting of randomly 
oriented crystallites are usually isotropic, although the 
individual crystallites contained in the microstructure 
are anisotropic. Sometimes such microstructures are 
called “quasi-isotropic” or “statistically isotropic”, but 
this should not obscure the fact that from a macroscopic 
(non-local, continuum) engineering point of view these 
materials are just isotropic and thus can be described by 
only two elastic constants. Therefore it is clear that the 
effective elastic constants of polycrystalline materials 
are related to the elastic constants of the crystallites by 
orientational averaging. For this calculation not only 
the stiffness matrix is needed, but also the compliance 
matrix, which is obtained from the former by matrix 
inversion [12]. 
	 According to Voigt’s “isostrain assumption” [13], 
the effective tensile modulus of a macroscopically 
isotropic polycrystalline material is

,             (12)

the effective shear modulus

,                      (13)
 
and the effective bulk modulus

.                         (14)
  

	 In these expressions A, B, C are given by

,                    (15)

,                    (16)

.                    (17)

	 Similarly, according to Reuss’s isostress assumption 
[14], the effective tensile modulus of a macroscopically 
isotropic polycrystalline material is

,                     (18)

the effective shear modulus

,                    (19)

and the effective bulk modulus

.                      (20)

	 In these expressions X, Y, Z are given by

,                    (21)

,                     (22)

.                    (23)

	 Using the aforementioned elastic standard relations, 
the corresponding Voigt and Reuss values of the Poisson 
ratios can be calculated as well. Hill [15] has shown that 
the Voigt and Reuss values represent upper and lower 
bounds, respectively, of the effective elastic moduli M 
of macroscopically isotropic polycrystalline materials 
(“Hill’s theorem”), i.e.

MR ≤ M ≤ MV  ,                          (24)

and further experience with the effective elastic pro-
perties of polycrystalline materials has shown that the 
Voigt bound and the Reuss bound are sufficiently close 
to neglect the difference between different means [16]. 
Therefore, following Hill’s recommendation [15], it is 
common practice to use the arithmetic mean of the Voigt 
and Reuss values,

                     (25)

(where M denotes any of the above moduli), as a valid 
estimate of the effective elastic modulus of dense iso-
tropic polycrystalline materials (“VRH average”). Of 
course, this averaging procedure can be used for adiabatic 
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or isothermal elastic constants at any temperature, as 
long as the material can be considered as purely (and 
linearly) elastic.
	 Of course, scatter of experimental data, rounding 
errors and the fact that taking the arithmetic (and not e.g. 
the geometric) average is to a certain degree an arbitrary 
choice, may cause certain errors in the calculated VRH 
averages so that these need not be entirely consistent 
with respect to the aforementioned elastic standard 
relations, resulting in a certain degree of mutual 
inconsistency of the values. However, it is usually 
possible to find an optimized set of elastic constants with 
highest degree of mutual consistency by changing one 
or two of the calculated VRH averages by a very small 
amount (typically not more than 100 MPa), and thus 
uncertainties of this kind can be largely eliminated. As 
a simple measure of mutual consistency one may choose 
relative root mean square (RMS) deviations defined as 
follows:

,          (26)

where M1(MVRH2, MVRH3) is the value of a selected mo-
dulus (here denoted by index 1) as calculated from the 
VRH averages of two other moduli (indices 2 and 3) and 
MVRH1 is the VRH average of this modulus calculated 
directly from its Voigt and Reuss values (upper and 
lower bounds). Thus, for each individual elastic modulus 
(E, G, K) the average (arithmetic mean) relative RMS 
deviation is given as 

.                      (27)

where the subscript i denotes the type of modulus con-
sidered and ζ2 and ζ3 are obtained by cyclic permutation 
of the indices in Equation (26). In fact, this measure can 
be used not only for the elastic moduli, but also for the 
Poisson ratio, i.e. for all elastic constants. Arithmetic 
averaging then yields the total average relative RMS 
deviation:

,                         (28)

where N is the number of all types of elastic constants 
considered. Minimization of this measure yields the 
desired optimized set of elastic constants. It should be 
recalled that this optimization procedure is based on the 
fact that the calculated VRH averages should be mutually 
consistent with respect to the elasticity standard relations 
for isotropic materials, and only two elastic constants 
should enable a calculation of the others with highest 
possible precision.

Temperature dependence and difference between 
isothermal and adiabatic elastic constants

	 Similar to most other material properties, elastic 
constants (and of course also its tensorial counterparts, 

the stiffness tensors) are temperature-dependent, e.g. for 
the Young’s modulus

E = E(T),                            (29)

with T being the absolute (thermodynamic) temperature 
in Kelvins [K]. From the theoretical point of view, such 
a temperature dependence arises naturally within the 
framework of linear thermoelasticity when temperature 
is chosen as the independent variable [17]. Elastic 
constants measured at constant temperature via static (or 
quasi-static, i.e. sufficiently slow) techniques, typically 
bending tests, are called isothermal. However, an 
alternative – completely equivalent and equally valid – 
theory of linear thermoelasticity can be constructed by 
replacing the temperature as the independent variable 
by the specific entropy s [17, 18]. In this case we have 
to consider entropy-dependent (instead of temperature-
dependent) elastic constants, e.g. for the Young’s 
modulus   Ẽ = Ẽ (s)  .                              (30)

	 Elastic constants measured at constant entropy, 
typically via dynamic methods (e.g. sound wave or 
resonant frequency techniques), are called isentropic or 
adiabatic. In this case the process mechanism exploited 
for measuring (wave propagation or vibration) is too 
fast for the material to attain thermal equilibrium, 
i.e. the entropy (heat content) is constant during the 
measurement, but not necessarily the temperature. That 
means, strictly speaking, the temperature is allowed 
to vary during the measurement or, put differently, the 
temperature is influenced by the measurement itself (not 
due to dissipative loss mechanisms, of course, which 
are excluded for purely elastic behavior, but because the 
atomic motion itself represents de facto an increase in 
temperature). However, the change in temperature due 
to atomic motion is usually unmeasurably small and 
need not to be taken into account when the temperature 
dependence of elastic constants (isothermal or adiabatic) 
is considered. 
	 Values of isothermal elastic constants are usually 
different from the adiabatic ones. In particular, the iso-
thermal and adiabatic bulk moduli are related by the 
ratio of specific heats at constant pressure (stress) and at 
constant volume (deformation), cp and cV, respectively, 
i.e.

,                             (31)

and since cp is always higher than cV, the adiabatic 
bulk modulus is always higher than the isothermal one 
[19,20]. Note, however, that on theoretical grounds the 
isothermal and adiabatic shear moduli are always equal 
[17-19], i.e.

G~   = G  .                              (32)

	 Since, according to the aforementioned elasticity 
standard relations, all elastic constants of isotropic ma-
terials can be calculated when two of them are known, 
the knowledge of the cp/cV ratio according to Equation 
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(31) alone is sufficient for calculating the differences 
between isothermal and adiabatic values for all elastic 
constants. This ratio can be calculated when the density, 
specific heat, (linear) thermal expansion coefficient and 
bulk modulus are known for the temperature in question. 
Note, however, that the bulk modulus in the well-known 
thermodynamic relation [21, 22]

cp – cV = TVK(3α)2   ,               (33)

is the isothermal bulk modulus and, in order to obtain 
the cp/cV ratio, the cV value has to be estimated via the 
Grüneisen parameter [18]. Therefore, when only the 
adiabatic bulk modulus is available (as is often the case), 
this relation has to be modified using Equation (31) and 
the cp/cV ratio is then given as

.        (34)

where K and K ̃ are the isothermal and adiabatic bulk 
moduli, respectively. Of course, the results of these 
calculations are critically dependent on the thermal 
expansion coefficients, because Equations (33) and (34) 
depend on α squared. 
	 It follows from thermodynamics that the elastic 
constants (both isothermal and adiabatic) will become 
temperature-independent at sufficiently low temperatures 
(i.e. when approaching absolute zero, also the temperature 
coefficient of the elastic constants goes to zero) [23]. On 
the other hand, for the high-temperature behavior of the 
elastic constants (above room temperature up to the point 
where the materials cease to be purely elastic, say) no 
general rules can be given, although for many simple 
ceramics (alumina, magnesia, thoria etc.) a slightly 
nonlinear decrease with increasing temperature seems to 
be typical [16, 23]. Several relations have been proposed 
to fit this type of temperature dependence [19, 23].

Porosity dependence of elastic constants

	 The presence of pores generally leads to a decrease 
of the elastic moduli, while the influence on the Poisson 
ratio is highly complex and still a point of dispute [24]. 
The porosity dependence of elastic moduli has been 
treated in great detail in many previous papers [25-30], 
where the relevant literature references can be found. 
Therefore only the main results concerning the Young’s 
modulus of porous materials with isometric pores are 
listed here, since only these will be used in the present 
context.  
	 It has to be recalled, that in the case of porous ma-
terials the lower micromechanical bounds fail [29], and 
thus only the upper bounds remain intact. These are the 
Voigt bound (volume-weighted arithmetic mean) [31]

Er = 1− ϕ  ,                           (35)

valid for porous materials of arbitrary symmetry, and the 
upper Hashin-Shtrikman (HS) bound [32]

,                           (36)

valid for isotropic porous materials only. In these re-
lations ϕ is the porosity and Er is the relative Young’s 
modulus, defined as the ratio between the effective 
Young’s modulus of the porous material and the Young’s 
modulus of the solid phase.
	 The two upper bounds are the only guidelines 
available without invoking model-based predictions. The 
simplest and most useful model-based predictions are 
all based on the linear approximation (also called dilute 
or non-interaction approximation, in reality the exact 
solution of the single-inclusion problem of a spherical 
void in an infinite medium)

Er = 1− 2ϕ  ,                           (37)

	 Although the numerical coefficient is, strictly spea-
king, a function of the Poisson ratio of the solid phase, to 
a very good approximation it may be assumed to be 2 for 
isometric pores [29]. Based on this linear approximation, 
to which all admissible porosity dependence functions 
must reduce in the dilute limit (ϕ → 0), the following 
non-linear types of relations have been proposed:

▪	Coble-Kingery relation (a second-order relation based 
on the boundary condition Er = 0 for ϕ = 1) [11, 25, 33]:

Er = 1− 2ϕ + ϕ2                        (38),

▪	Gibson-Ashby relation (a semi-empirical power-
law relation derived via a unit cell approach, strictly 
derivable via the differential scheme approach) [11, 26, 
34, 35]:

Er = (1− ϕ)2                       (39),

▪	Pabst-Gregorová relation (a modified exponential 
relation derived via the functional equation approach) 
[11, 27, 28]:

                    (40).

	 Note that the numercial value 2 of the linear coef-
ficient reappears in all these relations for the Young’s 
modulus and has to be replaced by another value when 
other properties are considered (e.g. 3/2 for thermal 
conductivity) [36, 37]. Note also that, accidentally, due 
to the aforementioned fact that for the Young’s modulus 
the numerical coefficient is extremely close to 2, the 
Coble-Kingery relation is identical to the Gibson-Ashby 
relation (this is true only for the Young’s modulus, but 
not for other elastic moduli [11]) so that in effect only 
two of these model relations remain: the power law, 
Equation (39), and our exponential relation, Equation 
(40). All these relations reduce to the correct dilute 
limit, are below the Hashin-Shtrikman upper bound, as 
required on theoretical grounds, and are predictive in 
the sense that when the Young’s modulus of the solid 
phase is known, these relations provide parameter-free 
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predictions of the porosity dependence of the Young’s 
modulus. Together with the upper Hashin-Shtrikman 
bound, Equation (36), which also corresponds to a 
realizable microstructure, this is a set of three (mutually 
exclusive) model relations that are available for the 
effective Young’s modulus of isotropic porous materials. 
However, the last of these, our exponential relation, is 
the lowest of these predictions and has turned out to be 
the most adequate relation for predicting the porosity 
dependence of the Young’s modulus in the majority 
of cases (with the exception of cellular materials with 
porosities above 70 %) [38-40].   

Structure and thermophysical properties 
of mullite and mullite ceramics

	 Mullite is an aluminosilicate with a variable alumi-
num-to-silicon ratio represented by the solid solution 
series Al2[Al2+2xSi 2-2x]O10-x, where the x value corresponds 
to the number of oxygen vacancies [41]. The composition 
of mullite observed so far is in the range 0.18 ≤ x ≤ 0.88, 
corresponding to 57 - 92 mol % Al2O3 [42], but the most 
important types are 3:2 mullite (x = 0.25, typical for 
“sinter mullite“, also called “stoichiometric mullite“, 
with alumina contents of about 60 mol %  = 72 wt. %) 
and 2:1 mullite (x = 0.40, typical for “fused mullite“, 
with alumina contents of about 64 mol % = 76 wt. %) [2]. 
Sillimanite, one of the three Al2SiO5 polymorphs with 
stability regions at high pressures, has a structure similar 
to mullite and its disordered variant can be considered 
as a mullite with x = 0.00 (note, however, that there 
is probably a miscibility gap between sillimanite and 
mullite [2]) while the transition alumina phase ι-Al2O3 
can be considered as a completely silica-free analogue of 
mullite with x = 0.00 [43]. The unit cell parameters, and 
thus the density, of mullite depend on the Al2O3 content, 
and thus the composition of mullites can be deduced 
from X-ray diffraction data [1, 2]. Structural details and 
their relation to mullite synthesis have been described in 
great detail in the literature. The interested reader may 
refer to [2], where the relevant references can be found. 
	 Based on the lattice constants, or unit cell volumes, 
listed in [2], which have been extracted from 12 lite-
rature references, and the composition given there, the 
true density ρ0 of mullite at room temperature can be 
determined to be 3.14 ± 0.03 g/cm3, in good agreement 
with the range 3.16 - 3.22 g/cm3, commonly reported 
for dense mullite ceramics [1, 44]. With increasing tem- 

perature the lattice constants increase and thus the den-
sity decreases, but the (linear or volumetric) coefficients 
of thermal expansion (CTEs) do not change very much 
with temperature, so that the apparent CTEs for finite 
temperature intervals αT1-T2 should be reasonably close 
to the true CTEs. Averaged over all monocrystal orien-
tations using the arithmetic mean of the (linear) CTE 
values α for the a, b and c axes [19], these values are 
between approximately 5.3 - 5.6 × 10-6 K-1 from 300°C 
to 1000°C and 7.2 - 7.5 × 10-6 K-1 above 1000°C up to 
1600°C [45, 46]. These values are in good agreement 
with α values reported for mullite and mullite ceramics 
elsewhere in the literature, which range from 4.8 - 5.7 × 
× 10-6 K-1 below 1000°C [1, 47]. However, the true α
values vary in a broader range because the lattice cons-
tants do not change linearly with temperature. An esti- 
mate based on the temperature dependence of the lattice 
constants [2] indicates true α values ranging from less 
than 4.0 × 10-6 K-1 at room temperature to more than 
8.0 × 10-6 K-1 at 1500°C. This is in reasonable agreement 
with the range of orientational values 4 - 7 × 10-6 K-1 
commonly reported for mullite-based fireclay or chamotte 
materials [48, 49]. At 1600°C the lattice constants a, 
b and c are approximately 0.7605 nm, 0.7785 nm and 
0.2915 nm, respectively [2], leading to a unit cell volume of 
approximately 0.1726 nm3 and a density of approximately 
3.05 g/cm3. The corresponding values for 500, 1000 and 
1500°C are listed in Table 1. It can be concluded that 
from room temperature up to 1600°C the apparent linear 
CTE increases from about 4 × 10-6 K-1 to more than
8 × 10-6 K-1 and the density decreases from approximately 
3.14 g/cm3 down to 3.05 g/cm3.
	 The specific heat at constant pressure cp of mullite 
is relatively well known. Figure 1 shows the temperature 
dependence of the specific heat for 3:2 mullite, according 
to the fit curve parameters from [50]. This temperature 
dependence is in satisfactory agreement with other lite-
rature data, although more recent research revealed a step 
in the heat capacity above 1000°C, possibly indicating a 
phase transition [51]. It is evident that the specific heat 
exhibits a monotonic increase and that it approaches 
for high temperatures the value calculated according 
to the Dulong-Petit rule [21] or – more presicely – the 
Neumann-Kopp rule [22], which is for cp approximately

cp = 26.8 · (n/m)  ,                   (41)

(in J/(gK); for cV the numerical constant would be 25.1 
[21]), where n is the number of elements in a formula 

Table 1.  Orientational values for the true density, true thermal expansion coefficient and specific heat at constant pressure for 
mullite (dense isotropic polycrystalline materials).

	Temperature (°C)	 Density (g/cm3)	 CTE (10-6 K-1)	 Specific heat (J/gK)	 Bulk modulus (GPa)

	 25	 3.14	 4.0	 0.598	 170.9
	 500	 3.13	 6.0	 1.155	 162.8
	 1000	 3.10	 7.5	 1.253	 154.2
	 1500	 3.06	 8.0	 1.310	 145.7
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unit (= 21 for ideal stoichiometric 3:2 mullite with the 
formula 3 Al2O3 × 2 SiO2 = Al6Si2O13) and m is the molar 
mass (= 3 × 102 g/mol for Al2O3 and 2 × 60.1 g/mol for 
SiO2, i.e. 426.2 g/mol for 3:2 mullite totally). According 
to this rule the asymptotic value for 3:2 mullite is 1.32 
J/(gK).   

	 Table 1 summarizes the recommended orientational 
values of the true density ρ0, the true coefficient of 
thermal expansion α and the specific heat at constant 
pressure cp for mullite at selected temperatures in the 
range from room temperature up to 1500°C. All these 
values are needed, in addition to the bulk modulus, to 
estimate the estimate the difference between isothermal 
and adiabatic elastic constants, which are measured via 
static and dynamic methods, respectively. 

	 Table 1 also lists the estimated bulk moduli for 
the temperatures in question. The bulk moduli listed 
there are based on the adiabatic value 170.9 GPa at 
room temperature (see Table 3 below) and have been 
calculated assuming a linear decrease of 1 × 10-4 K-1, 
i.e. the a decrease by 0.00878 GPa (0.01 % of the initial 
room temperature value) per Kelvin. Such a decrease is 
certainly the correct order of magnitude and relatively 
close to reality, since (negative slope) temperature 
coefficients in the range 0.7 - 1.2 × 10-4 K-1 can be read off 
from the temperature dependence of stiffness constants 
in [2] and similar values, 0.5 - 0.9 × 10-4 K-1, have been 
reported for the temperature dependence of the Young’s 
modulus [4, 52].   
	 The symmetry (crystal system) of mullite is ortho- 
rhombic (point group mmm, space group Pbam), 
although accidentally pseudotetragonal variants may 
occur (when a = b at a certain composition) [2]. That 
means, mullite single crystals have, in general, nine 
independent elastic constants (stiffnesses) or elastic 
coefficients (compliances) [10].   

Elastic properties of mullite
and mullite ceramics

	 Table 2 lists the elastic constants (stiffnesses) 
reported in the literature for mullite at room temperature. 
These values have been measured by dynamic methods 
(Brillouin spectroscopy [5, 6] and resonant ultrasound 
spectroscopy [7, 8]) for mullite single crystals of density 
3.11 ± 0.01 g/cm3 and thus represent adiabatic elastic 
constants. The corresponding values for sillimanite [53] 
are given for comparison. 

Figure 1.  Temperature dependence of the specific heat at con-
stant pressure for mullite (based on the fit parameters listed 
in [50]).
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Table 2.  Components of the elasticity tensor (stiffness matrix) for mullite and sillimanite single crystals at room temperature 
(all values in [GPa]).

Phase	 C11	 C22	 C33	 C44	 C55	 C66	 C12	 C23	 C31	 Ref.

2.5:1 mullite	 280.0	 245.0	 362.0	 111.0	 78.1	 79.0	 105.0	 135.0	 99.2	 [5]
2.5:1 mullite	 281.9	 244.2	 363.6	 111.7	 78.2	 79.2	 105.1	 142.3	 100.3	 [6]
2:1 mullite	 291.3	 232.9	 352.1	 110.3	 77.39	 79.9	 112.9	 121.9	 96.2	 [7]
2:1 mullite	 279.5	 234.9	 360.6	 109.5	 74.94	 79.9	 103.1	 135.6	 96.1	 [8]
Sillimanite	 287.3	 231.9	 388.4	 122.4	 80.7	 89.3	 94.7	 158.6	 83.4	 [53]

Table 3.  Components of the elasticity tensor for mullite (and sillimanite) single crystals at room temperature.

	 EV	 ER	 EVRH	 GV	 GR	 GVRH	 KV	 KR	 KVRH	 Poisson
Phase					     (GPa)					     ratio

2.5 : 1 mullite [5]	 230.6	 222.0	 226.3	 90.1	 86.6	 88.4	 173.9	 169.4	 171.7	 0.280
2.5 : 1 mullite [6]	 230.6	 221.2	 225.9	 90.0	 86.1	 88.0	 176.1	 171.0	 173.6	 0.283
2 : 1 mullite [7]	 229.4	 220.0	 224.7	 89.9	 85.9	 87.9	 170.9	 167.5	 169.2	 0.279
2 : 1 mullite, optimized [7]	 –	 –	 224.7	 –	 –	 87.86	 –	 –	 169.2	 0.2787
2 : 1 mullite [8]	 227.4	 217.5	 222.4	 88.9	 84.8	 86.8	 171.6	 166.5	 169.0	 0.281
Sillimanite [9]	 244.8	 227.1	 236.0	 96.5	 89.2	 92.9	 175.7	 167.1	 171.4	 0.2705
Average mullite, without optimization	 –	 –	 224.8	 –	 –	 87.8	 –	 –	 170.9	 0.281
Average mullite, optimized	 –	 –	 224.89	 –	 –	 87.80	 –	 –	 170.91	 0.2807
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	 Table 3 lists the effective elastic constants calculated 
from the monocrystal data in Table 2, including the 
optimized data sets (involving changes in the second 
decimal). Obviously, the differences between 2.5:1 and 
2:1 mullite are quite small. Unfortunately, monocrystal 
data for 3:2 (= 1.5:1) mullite are not available. At first 
sight it seems, that there is a trend to lower elastic 
moduli when going from 2.5:1 to 2:1 mullite, and it 
might be tempting to “extrapolate“ this trend to a 1.5:1 
(= 3:2) mullite. The comparison with sillimanite (≈ 1:1 
mullite), however, may be taken as evidence for the 
fact that no such trend exists and that any attempts to 
deduce the elastic constants of 3:2 mullite by this kind of 
“extrapolation“ must be futile. Therefore, at the current 
state of the art, the differences between the data sets 
must be attributed to experimental scatter, not indicating 
typical differences between specific compositional va-
riants of mullite. Therefore it is probably justified to 
consider the average values of the four data sets as the 
most reliable elastic constants. 
	 Table 4 lists the corresponding average relative RMS 
deviations before and after optimization. It is evident 
that before optimization the average data set exhibits a 
similar degree of mutual consistency as the individual 
data sets. However, the optimization results show, that 
this consistency can be greatly improved by changing the 
calculated averages by less than 0.1 GPa (which is hardly 
measurable). Actually, after optimization the average set 
of elastic constants (obtained in this work by averaging 
the VRH averages of four reliably known monocrystal 
data sets) has the highest degree of consistency and 
can thus be considered as a very reliable data set for 
mullite. These are the data that can be compared with the 
(porosity-corrected) data measured for mullite ceramics 

[1, 2, 4, 54, 55] and recommended as input data for the 
calculation of mullite-containing multiphase ceramics 
(e.g. porcelain, fireclay refractories) and composites (e.g. 
mullite-zirconia composites, high-alumina refractories).
	 It has to be emphasized that all these values refer to 
adiabatic elastic constants. In order to obtain estimates of 
the expected isothermal elastic constants, the cp/cV ratios 
may be calculated using the thermomechanical data 
from Tables 1 and 3. Table 5 shows the results of these 
calculations. 
	 It is evident that the relative differences between 
adiabatic and isothermal elastic constants increase 
slightly with temperature, but remain below 4 % and 2.5 
% for the bulk modulus and Poisson ratio. Apart from 
the shear moduli, for which they are identically zero, the 
relative differences are lowest for the Young’s modulus, 
and remain below 0.5 % even at 1500°C. That means, the 
difference between the adiabatic and isothermal Young’s 
moduli of mullite will be hardly detectable by routine 
measurement techniques, and thus can be neglected in 
practice.  

CONCLUSION

	 In this first part of a two-paper set on the elastic 
properties of mullite and mullite-containing ceramics 
the current literature has been reviewed and, based 
on the available monocrystal data, a mutually consistent 
average set of elastic constants for dense polycrystalline 
mullite materials at room temperature has been cal-
culated and optimized via minimization of the total 
average relative root mean square (RMS) deviation. 
Based on the results of this paper, the recommended 

Table 5.  Calculated ratios between adiabatic and isothermal bulk moduli (= cp/cV ratios) of mullite, their relative differences as well 
as the corresponding ratios and differences for Young’s moduli and Poisson ratios at room temperature, 500, 1000 and 1500°C.

		  Relative difference		  Relative difference		  Relative difference
Temperature	 cp/cV = K~  /K	 (K~   – K)/K	 E~  /E	 (E~  – E)/E	 ν~  /ν	 (ν~  – ν)/ν
(°C)		  (%)		  (%)		  (%)

25°C	 1.0039	 0.4	 1.00057	 0.1	 1.00374	 0.4
500°C	 1.0113	 1.1	 1.00165	 0.2	 1.00757	 0.8
1000°C	 1.0256	 2.6	 1.00374	 0.4	 1.01730	 1.7
1500°C 	 1.0371	 3.7	 1.00543	 0.5	 1.02525	 2.5

Table 4.  Average relative RMS deviations for the individual elastic constants (E, G, K, ν) and total average relative RMS deviation 
for all elastic constants (all values in 10-5).

Data set and reference	 ΔE	 ΔG	 ΔK	 Δυ	 Δ

2.5 : 1 mullite [5]	 59.2	 60.0	 154.6	 76.0	 87.4
2.5 : 1 mullite [6]	 41.2	 56.3	 112.8	 97.2	 76.9
2 : 1 mullite [7]	 83.8	 107.7	 199.5	 189.9	 145.2
2 : 1 mullite, optimized [7]	 8.1	 7.3	 21.0	 11.9	 12.1
2 : 1 mullite [8]	 62.5	 61.4	 163.8	 83.2	 92.7
Average mullite, without optimization	 69.5	 93.0	 180.7	 162.1	 126.3
Average mullite, optimized	 1.1	 1.3	 2.3	 2.1	 1.7
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values of adiabatic elastic constants are 224.9 GPa for 
the Young’s modulus, 87.8 GPa for the shear modulus, 
170.9 GPa for the bulk modulus and 0.281 for the 
Poisson ratio. The RMS deviation of this set is lower 
than for any other set, and thus these values exhibit a 
high degree of mutual consistency with respect to the 
elasticity standard relations. Micromechanical upper 
bounds and model relations have been summarized for 
describing the porosity dependence of elastic moduli, and 
a simple relation has been used to estimate the difference 
between adiabatic and isothermal elastic constants. The 
results show that this difference increases slightly with 
temperature, but is not larger than 4 % even at 1500°C. 
In particular, for the Young’s modulus the difference 
remains below 0.5 %. That means, the difference between 
adiabatic and isothermal Young’s moduli will usually be 
unmeasurably small and negligible in practice.  
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