SYNTHESIS OF ALUMINUM OXYNITRIDE SPINEL POWDERS BY ALUMINOTHERMIC REACTION UNDER REDUCING CONDITIONS

WENDONG QIU*, [#]GUOZHI RUAN*,**, ZHIHUI ZHANG**, JUNHUA OUYANG*, GUOGANG XU**

*Refracotory division, Shanghai baosteel industrial services Co., LTD., Baoshan Distirct, Shanghai 201900, People's Republic of China **College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China

[#]E-mail: rgzref@163.com

Submitted March 12, 2014; accepted October 27. 2014

Keywords: X-ray diffraction; ceramic; sintering; AlON

Aluminum oxynitride spinel (AlON) powders were synthesized by aluminothermic reaction under reducing conditions provided by N_2 -CO atmosphere using low cost and easily available aluminum and γ -Al₂O₃ alumina micron-sized powders as starting materials. The influence of Al/ γ -Al₂O₃ ratio and sintering temperature on the phase composition and microstructure of sintered samples was explored. The experimental results showed that when Al/ γ -Al₂O₃ mass ratio equal to 3, AlON phase with AlN as a minor phase can be formed at 1600°C using this method. And we attributed the presence of small amounts of AlN to the displacement of oxygen atoms from AlON phases by nitrogen atoms at high temperature under carbon embedded condition. At the same time, grains of AlON were tabular in shape and whiskers can be found in samples after sintered at 1600°C because of elevated amount o non-stoichiometric species (Al, Al₂O, AlO) produced in strongly reducing atmosphere.

INTRODUCTION

Spinel-structure aluminum oxynitride (AlON) is an important single-phase and stable solid solution ceramic in the Al₂O₃-AlN system [1-2]. In its solid solution range, the molar content of Al_2O_3 is 62.4%-72.5% [3]. AlON has good resistance to high temperature, corrosion, and oxidation, makes it useful in advanced temperature structural ceramics, cutting tools and refractories [4-6]. At the same time, AlON has favorable optical properties. It is suitable for use in infrared and visible window applications [7-8]. Therefore, AlON ceramic has broad prospects for applications in modern national defense and economic construction, but its high cost of production severely limits its applications. The industrial way for synthesis of AlON of different compositions is high-temperature sintering of AlN and Al₂O₃ in pure nitrogen or a vacuum [9-10]. The major difficulty with this technique is in obtaining AlN powders with a high purity and a fine particle size. Relatively novel method of AlON synthesis is carbothermal nitridation of Al₂O₃ $(C+Al_2O_3)$ and aluminothermic reduction by Al+Al_2O_3 [11-13]. However, these methods of AlON synthesis still required the very pure nitrogen (oxygen content: 7 p.p.m). This makes its high cost of production.

In order to reduce the oxidation of the carbonaceous phases, charcoal-protected method was widely used in the

preparation and application of carbonaceous materials. This method has the advantages of simple process and low cost. Li Yuanbing et al [14] synthesized TiB₂ based composite in charcoal-protected condition and found CO and N₂ are the main gases in this atmosphere. In order to overcome the shortcoming of synthesis AlON in very pure nitrogen and reduce production cost of AlON, the main purpose of the present investigation of AlON synthesis, is to explore the possibility of synthesis of AlON using aluminum and γ -Al₂O₃ as raw materials in charcoal-protected condition. At the same time, we will study the effect of variation of different synthesis parameters on conversion rate and particle morphology. To this end, powder mixtures of different of aluminum and y-Al₂O₃ starting materials were heat-treated at different temperature in charcoal-protected condition.

EXPERIMENTAL

Commercially available aluminum and γ -Al₂O₃ powders were used as raw materials. The average particle size and purity of aluminum powders were 50 µm and more than 99.5% in mass percent and those of γ -Al₂O₃ powders were 1.18 µm and more than 99% in mass percent. The γ -Al₂O₃ was produced from boehmite heated at 700°C for 4 h.

Aluminum powders were mixed with 88, 70 and 25 wt.% γ -Al₂O₃. The samples were classified as A, B, and C, respectively. Different powders batches were mixed and homogenized by ball milling in ethanol for 2h in a nylon bottle with alumina balls. After drying at 60°C for 24 h, the powder cake was crushed in an agate mortar and passed through a 100 mesh sieve. The granules were formed into cylinders 20mm in diameter and 15mm in thickness pressed at 200 MPa in a stainless-steel die. The cylinders were then covered with carbon granules (5-0.5 mm) in a sagger and heated in a furnace at 1600 °C for 3 h (Fig. 1), respectively.

XRD analysis(D/MAX2500PC model, Rigaku Co., Japan) was conducted using Ni filtered Cu K_aunder the following conditions: scanning speed of 2° min⁻¹ and temperature of 16°C. The microstructure was carried out using scanning electron microscopy (SEM) (KYKY-2800B). Particle size of raw materials was measured using a laser diffraction method (Mastersizer 2000E, Malvern Instruments Ltd., England).

Figure 1. Schematic diagram of preparation process.

RESULTS AND DISCUSSION

Fig. 2 shows XRD patterns of samples with different mass ratio of Al and γ -Al₂O₃ sintered at 1600°C for 3h. It is evident from the figure that AlON peaks appear in all samples and the peak intensity of AlON increases to a maximum in samples C. When $Al/\gamma - Al_2O_3$ mass ratio equal to 0.14 and 0.43, a large amount of Al₂O₃ phases remained indicating the inappropriate Al/γ - Al_2O_3 mass ratio. In case of sample C, only a small amount of AlN existed as well as large amounts of AlON phases. Therefore, we concluded that AlON phase with AlN as a minor phase can be formed at 1600 °C in charcoalprotected condition when Al/γ - Al_2O_3 mass ratio equal to 3. This temperature is lower than its synthetic temperature in the phase diagram of McCauley [15]. We attributed this decrease to two reasons. One side, in charcoal-protected condition, CO and N₂ are the main gases. Carbon monoxide is produced by the reaction between atmospheric oxygen and carbon granules in the sagger and the nitrogen is from the atmosphere. According to literature [16], Al and CO can react to form Al_2O_3 and C in charcoal-protected condition. Reaction equation as follows:

$$2A1(1) + 3CO(g) = A1_2O_3(s) + 3C(s)$$

This is an exothermic reaction. Therefore, the actual temperature around samples is higher than 1600°C. The oxidation of aluminum in charcoal-protected condition also coincided well with the higher content of aluminum required in this paper than that of other paper which AlON was synthesized by aluminothermic reduction [12]. On the other hand, alumina obtained by oxidization of aluminum has higher activity and the volatility of alumina is several orders of magnitude greater in reducing conditions [17]. These are helpful for AlN which obtained by aluminum and N_2 in the furnace react with Al_2O_3 to AlON.

Figure 2. XRD patterns of specimens sintered at 1600°C for 3 h: $A - Al/\gamma - Al_2O_3$ mass ratio equal to 0.14, $B - Al/\gamma - Al_2O_3$ mass ratio equal to 0.43, $C - Al/\gamma - Al_2O_3$ mass ratio equal to 3.

XRD patterns of sample C in Fig. 2 show the presence of very small amount of AlN. In order to further investigate the effect of sintering temperature and Al content on the peak intensity of AlN, four more samples, having the same composition as sample C, were prepared and sintered at 1550 °C, 1650 °C, 1700 °C and 1750 °C for 3 h, respectively. XRD patterns of these samples are presented in Fig. 3. It is evident from the figure that AlON is the main phase in all samples. The diffractogram A in Fig. 3 shows the presence of Al₂O₃ and AlN at 1550 °C. Therefore, we concluded that Al₂O₃ and AlN is not completely reaction at 1550 °C. When sintering temperature is higher than 1600 °C, Al₂O₃ phase disappears, the peak intensity of AlN decreases to the lowest at 1600°C and then increases above this temperature up to 1750 °C. This shows that the optimal synthesis AlON temperature under reducing conditions is 1600 °C. In addition, two more samples having Al/ γ -Al₂O₃ mass ratio equal to 2.70 and 3.35 (Al content below and above 75 wt%), respectively were prepared and sintered at 1600 °C for 3 h. XRD patterns of these samples are presented in Fig. 4. It is seen that the predominant phase is AlON. A small amount of AlN appears in Fig. 4B and 4C but in Fig. 4A both AlN and A₁₂O₃ phases are present. Al/ γ -Al₂O₃ mass ratio has little effect on the peak intensity of AlN. Therefore, we can attribute the presence of AlN to the displacement of oxygen atoms from AlON phases by nitrogen atoms at high temperature under carbon embedded condition.

Figure 3. XRD patterns of specimens with Al/γ - Al_2O_3 mass ratio equal to 3 sintered at different temperature: A – 1550°C, B – 1600 °C, C – 1650°C, D – 1700 °C, E – 1750°C

Figure 4. XRD patterns of specimens sintered at 1600°C for 3 h: $A - Al/\gamma - Al_2O_3$ mass ratio equal to 2.70, $B - Al/\gamma - Al_2O_3$ mass ratio equal to 3, $C - Al/\gamma - Al_2O_3$ mass ratio equal to 3.35.

Ceramics – Silikáty 58 (3) 229-232 (2014)

This is also the cause of peak intensity of AlN increasing with sintering temperature (in Fig. 3). The temperature dependency of AlN peak intensity of sample C was similar to that for the AlON synthesized under flowing nitrogen atmosphere [13].

Scanning electron micrographs of samples with $Al/\gamma - Al_2O_3$ mass ratio equal to 3 sintered at 1600 °C for 3 h are shown in Fig. 5 and Fig. 6. Fig. 5 shows grains of AlON are tabular in shape. This is attributed to elevated amount of non/stoichiometric species (Al, Al₂O, AlO) produced in strongly reducing atmosphere. These low valence aluminum oxide gases make the growth of AlON controlled by interface reaction because of the higher mass transport rate of gas. According to literature [18], the plate-like crystals increase when grain growth is controlled by the interface reaction. It is noted in Fig. 6 that some AION whiskers appear, especially the surface and hole of specimens. At the same time, most of the whiskers have sharp top and whiskers with hemispherical droplet are very few. Therefore, we suppose that the mechanism of whiskers growth was vapor-solid (VS) mechanism. The AION whiskers growth process may be as follows. As the reaction progresses, a large number

Figure 5. SEM micrographs of sample C sintered at 1600°C for 3 hours.

Figure 6. Secondary electron micrographs of AlON whiskers of sample C sintered at 1600°C for 3 hours.

of low valance aluminum oxide diffuse to the surface of specimens or hole in specimens and react with N_2 and Al_2O_3 . Then reaction products nucleate and grow on the surface of AlON particle which has been generated. Thus, AlON whiskers were produced in this paper. This also may be the reason that whiskers are mainly present at the surface and in the pores of the specimens.

CONCLUSIONS

The main purpose of this paper was to explore the possibility of synthesis of AlON powders using aluminum and γ -Al₂O₃ as raw materials under reducing conditions. Influences of Al/ γ -Al₂O₃ mass ratio and sintering temperature in the phase composition and microstructure of sintered samples were studied. Based on the results above, it could be concluded as following:

- 1) Al/ γ -Al₂O₃ mass ratio of raw materials and sintering temperature played a great role in the synthesis of AlON powders. When Al/ γ -Al₂O₃ mass ratio equal to 3, AlON phase with AlN as a minor phase can be formed at 1600°C. We attributed the presence of AlN to the displacement of oxygen atoms from AlON phases by nitrogen atoms at high temperature under carbon embedded condition. The peak intensity of AlN increased with sintering temperature when the sintering temperature is higher than 1600 °C.
- 2) The grains of AlON synthesized in this paper were tabular in shape and whiskers can be found in samples sintered at 1600°C because of elevated amount of aluminum species (Al, Al₂O, AlO) produced in strongly reducing atmosphere.
- 3) It may be concluded that AlON powders can be easily produced under reducing conditions. In order to obtain single-phase AlON powder, research along these lines is in progress.

Acknowledgements

This work is supported by the Scientific Research Foundation of Shandong for Outstanding Young Scientist under Grant No.BS2011CL030 and No.BS2011CL029. The Young Scientists Fund of the National Natural Science Foundation of China (Grant No.51202133).

REFERENCES

- 1. Kim Y.M., Park B.H., Lee Y.B., Oh K.D., Riley F.L.: Ceram. Trans. 97, 97 (1998).
- Watari K., Ishizaki K., Fujikawa T.: J.Mater. Sci. 27, 2627 (1992).
- 3. Willems H.X., Hendrix M.M., With G. de, Metselaar R.: J. Eur. Ceram. Soc. *10*, 339 (1992).
- Zhang Z.T., Li W.C., Saiyin B.: Materials & Design 26, 363 (2005).
- Cheng J.P., Agrawal D., Roy R.: J. Mater. Sci. Lett. 18, 1989 (1999).
- Zhang Z.T., Wang X.D., Li W.C.: J. Alloy. Compd. 387, 74 (2005).
- McCauley J.W., Corbin N.D.: J. Am. Ceram. Soc. 62, 476 (1979).
- Paliwal B., Rameah K.T., McCauley J.W.: J. Am. Ceram. Soc. 89, 2128 (2006).
- Liu X.J., Li H.L, Huang Z.R., Wang S.W., Jiang D.L.: J. Inorganic Mater. 24, 1159 (2009).
- Yamashita H., Yamaguchi A.: J. Ceram. Soc. JP. 109, 434 (2001).
- Tian T.Y., Du H.B., Jiang H.W., Sun F., Zhang W., Feng Z.H.: Bull. of the Chinese Ceram. Soc. 28, 1093 (2009).
- Dariusz Zientara, Miroslaw M. Bućko, Jerzy Lis: J. Eur. Ceram. Soc. 27, 775 (2007).
- Zhang N., Liang B., Wang X.Y., Kan H.M., Zhu K.W., Zhao X.J.: Mater Sci & Eng A. 528, 6259 (2011).
- 14. Li Y.B., Ruan G.Z., LiN.: Mater. Sci and Tech. 19, 64 (2003).
- 15. McCauley J.W., Corbin N.D.: J. Am. Ceram. Soc. 62, 476 (1979) .
- Liu G.Q., Wang J.X., Yang S., Li H.X., Naihuo Cailiao 39, 26 (2005).
- 17. Li Y.W., Li N., Yuan R.Z.:J. Chin. Mater. Res. 10, 633 (1996).
- Zhang X.Y., Zhou K.C., Li Z.Y., Hou J.F.: J. Chin. Nonferrous Metals. *17*, 871 (2007).